

Week 7

Functions

F. Sorin (MX)

Ecole Polytechnique Fédérale de Lausanne

Overview

- Origin of functions
- Limits and Continuity
- Differentiability and Taylor Expansions
- First results on important functions

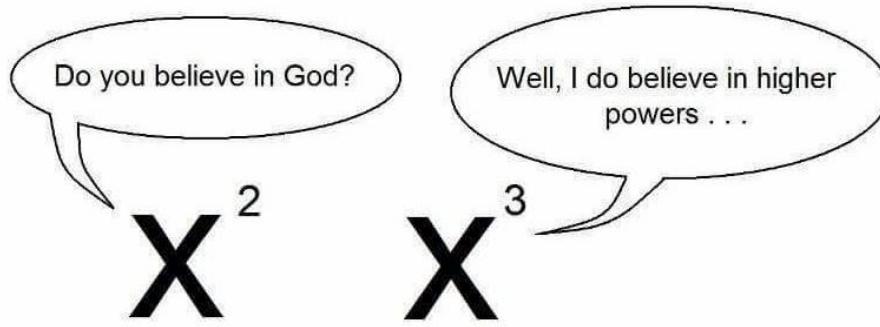
(parts of chapters 3, 4 and 5 of the book)

- Binary phase diagrams
- Lennard-Jones potential (with Prof. Carter)

The concept of functions

- The concept of Functions has been developed slowly over centuries of discoveries, and it is hard to bring forward one particular mathematician associated with it.
- In 1755, in his *Institutiones calculi differentialis*, Swiss mathematician Leonhard Euler gave a more general concept of a function that is very close to our modern understanding:

“When certain quantities depend on others in such a way that they undergo a change when the latter change, then the first are called *functions* of the second. This name has an extremely broad character; it encompasses all the ways in which one quantity can be determined in terms of others.”

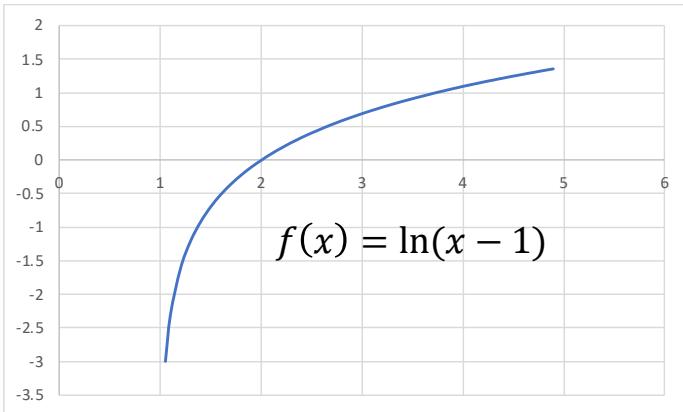
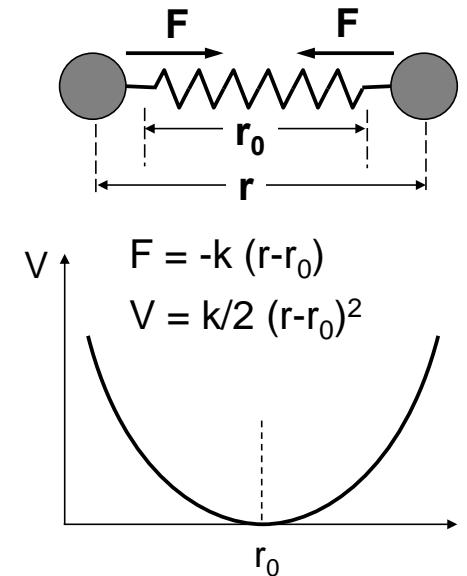


Leonhard Euler (1707-1783)

- Euler popularized the Greek letter π to denote the ratio of a circle's circumference to its diameter, was the first using the notation $f(x)$ for the value of a function, the letter i to express the imaginary unit, the Greek letter Σ to express summations, the Greek letter Δ for finite differences. He gave the current definition of the constant e , the base of the natural logarithm, now known as Euler's number.

The concept of functions

- Given two sets of real numbers, a domain (often referred to as the x-values, and interval I) and a co-domain (often referred to as the y-values), a real function assigns to each x-value a *unique* y-value.
- Injective function* (or injection): function f that maps distinct elements of its domain to distinct elements; that is, $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- Surjective functions* (or surjection): a function f such that every element y can be mapped from element x so that $f(x) = y$.
- Example: the function $f(x) = x^2$ is injective and surjective (ie bijective) from $I = \mathbb{R}_+$ to \mathbb{R}_+ . It is not injective from $I = \mathbb{R}$ to \mathbb{R}_+ , and not surjective $I = \mathbb{R}$ to \mathbb{R}_- .



- $f(x) = \ln(x - 1)$ is not defined for $x \leq 1$. It is injective and surjective from $I =]1, +\infty[$ to \mathbb{R} .
- The domains of definition are hence very important when defining the properties of functions : physically but also mathematically !

The concept of functions

- Functions defined on a domain, often a part $I \subset \mathbb{R}$, form an associative and commutative \mathbb{R} -algebra (often denoted K^I) with the common addition, multiplication, and the product of a function with a scalar

$$\left\{ \begin{array}{ll} \forall f, g \in \mathbb{K}^X, \forall x \in X, & (f + g)(x) = f(x) + g(x) \\ \forall f, g \in \mathbb{K}^X, \forall x \in X, & (fg)(x) = f(x)g(x) \\ \forall \lambda \in \mathbb{K}, \forall f \in \mathbb{K}^X, \forall x \in X, & (\lambda f)(x) = \lambda f(x) \end{array} \right. .$$

- Other definitions:
 - Composition: if a function f is defined from I to X , and g is defined over X , then one can define the function $\forall x \in I, h(x) = gof(x)$.
 - f^{-1} is the inverse of f and is defined such that $f^{-1}of = fof^{-1} = I_d$ (*the identity function*).
 - A function is even (odd) if $\forall x \in I, f(x) = f(-x)$ ($f(x) = -f(-x)$)
 - Periodicity: f is periodic of period T if $\forall x \in I, f(x + T) = f(x)$.
- Limits of real functions:
 - A function $f: I \rightarrow \mathbb{R}$ with I including $+\infty$, admits l for limit when x goes to infinity if and only if
$$\forall \varepsilon > 0, \exists A > 0, \forall x \in I, (x \geq A \Rightarrow |f(x) - l| < \varepsilon)$$
 - A function $f: I \rightarrow \mathbb{R}$ with I including $+\infty$, admits $+\infty$ for limit when x goes to infinity if and only if
$$\forall A > 0, \exists A' > 0, \forall x \in I, (x \geq A' \Rightarrow f(x) \geq A)$$

The important notion of limits

- Limits of functions **at finite values** are very important and can be defined by looking at the limit of sequences:

- A function $f: I \rightarrow \mathbb{R}$ (or other domain) admits l for limit in a point $a \in I$ if and only if For all sequence $(u_n)_{n \in \mathbb{N}}$ such that $\lim_{n \rightarrow \infty} u_n = a$, $\lim_{n \rightarrow \infty} f(u_n) = l$.

- One can express this without sequences:

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I, |x - a| < \alpha \Rightarrow |f(x) - l| < \varepsilon$$

- Functions can diverge to $\pm\infty$ at finite values of the argument:

Divergence to $+\infty$: $\forall A > 0, \exists \alpha > 0, \forall x \in I, |x - a| < \alpha \Rightarrow f(x) \geq A$

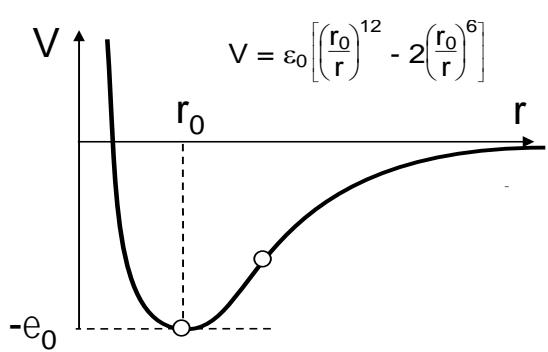
Divergence to $-\infty$: $\forall B < 0, \exists \alpha > 0, \forall x \in I, |x - a| < \alpha \Rightarrow f(x) \leq B$

- Like for Sequences:
 - If f is increasing (decreasing) and has an upper bound (lower bound), then it converges.
 - If f is increasing (decreasing) and has no upper bound (lower bound), then it tends to $+\infty$ ($-\infty$).

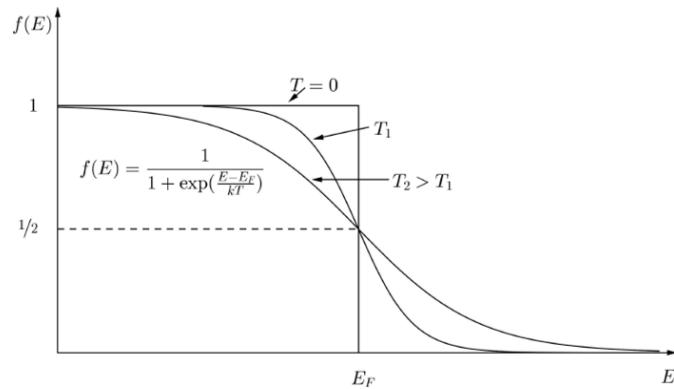
Right and Left limits

- The concepts of limits and continuity of functions are essential in Materials Science.
- To apprehend it, it is essential to distinguish the limit when we approach a real number l from a sequence greater or smaller than l .

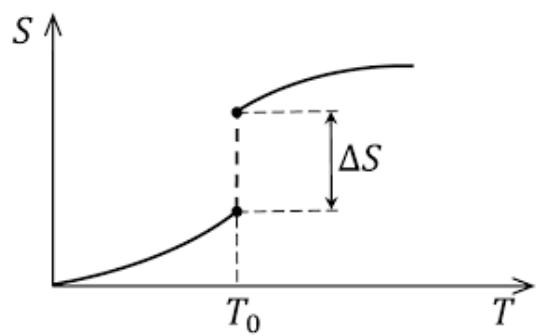
Lennard-Jones potential: bonds



Electrons Occupancy



First order phase transition



- $f: I \rightarrow \mathbb{R}$ (or other domain) admits a right limit l at a point $a \in I$ if and only if For all sequence $(u_n)_{n \in \mathbb{N}}$ such that $\lim_{n \rightarrow \infty} u_n = a$ and $\forall n \in \mathbb{N} u_n > a$, $\lim_{n \rightarrow \infty} f(u_n) = l$.

One can express this without sequences:

$f: I \rightarrow \mathbb{R}$ has a right limit l at $a \in I$ if:

$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I, 0 < x - a \leq \alpha \Rightarrow |f(x) - l| < \varepsilon$ Notation: $\lim_{x \rightarrow a^+} f(x) = l$

$f: I \rightarrow \mathbb{R}$ has a left limit l at $a \in I$ if:

$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I, 0 < a - x \leq \alpha \Rightarrow |f(x) - l| < \varepsilon$ Notation: $\lim_{x \rightarrow a^-} f(x) = l$

Results of limits

- For $(\lambda, l, l') \in \mathbb{C}^3, f, g: I \rightarrow \mathbb{R}$ f,g admit l and l' as limit at a point $a \in I$ respectively:

$$f(x) \xrightarrow{x \rightarrow a} l \implies |f(x)| \xrightarrow{x \rightarrow a} |l|$$

$$f(x) \xrightarrow{x \rightarrow a} 0 \iff |f(x)| \xrightarrow{x \rightarrow a} 0$$

$$\left. \begin{array}{l} f(x) \xrightarrow{x \rightarrow a} l \\ g(x) \xrightarrow{x \rightarrow a} l' \end{array} \right\} \implies f(x) + g(x) \xrightarrow{x \rightarrow a} l + l'$$

$$f(x) \xrightarrow{x \rightarrow a} l \implies \lambda f(x) \xrightarrow{x \rightarrow a} \lambda l$$

$$\left. \begin{array}{l} f(x) \xrightarrow{x \rightarrow a} 0 \\ g \text{ is bounded around } a \end{array} \right\} \implies f(x)g(x) \xrightarrow{x \rightarrow a} 0$$

$$\left. \begin{array}{l} f(x) \xrightarrow{x \rightarrow a} l \\ g(x) \xrightarrow{x \rightarrow a} l' \end{array} \right\} \implies f(x)g(x) \xrightarrow{x \rightarrow a} ll'$$

$$\left. \begin{array}{l} g(x) \xrightarrow{x \rightarrow a} l' \\ l' \neq 0 \end{array} \right\} \implies \frac{1}{g(x)} \xrightarrow{x \rightarrow a} \frac{1}{l'}$$

$$\left. \begin{array}{l} f(x) \xrightarrow{x \rightarrow a} l \\ g(x) \xrightarrow{x \rightarrow a} l' \\ l' \neq 0 \end{array} \right\} \implies \frac{f(x)}{g(x)} \xrightarrow{x \rightarrow a} \frac{l}{l'}.$$

- If f is complex, then:

$$f : I \rightarrow \mathbb{C}, (\alpha, \beta) \in \mathbb{R}^2$$

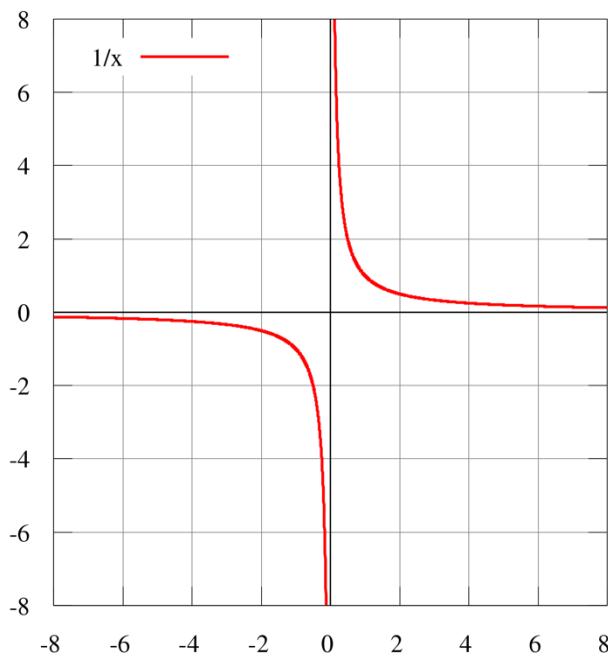
$$f(x) \xrightarrow{x \rightarrow a} \alpha + i\beta \iff \left\{ \begin{array}{l} (\operatorname{Re} f)(x) \xrightarrow{x \rightarrow a} \alpha \\ (\operatorname{Im} f)(x) \xrightarrow{x \rightarrow a} \beta. \end{array} \right.$$

Continuous functions

- A function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument.
- A function $f: I \rightarrow \mathbb{R}$ with $I \subset \mathbb{R}$, f is continuous at the point $x_0 \in I$ if:

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I, |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

It is equivalent to say that f is continuous at point $x_0 \in I$ if and only if **f has a right and left limit at x_0 and the limits are equal. (i.e. f must have $f(x_0)$ as a limit at x_0).**



Continuous functions

- Definition with sequences:

A function $f: I \rightarrow \mathbb{R}$ (or other domain) admits l for limit in a point $a \in I$ if and only if :

For all sequence $(u_n)_{n \in \mathbb{N}}$ such that $\lim_{n \rightarrow \infty} u_n = a$, $\lim_{n \rightarrow \infty} f(u_n) = f(a)$

- Important results

- If f and g are two continuous functions over an interval I :

- $|f|$ is continuous
 - $f + g$ is also continuous over I ,
 - $\lambda f, \lambda \in \mathbb{R} \text{ or } \mathbb{C}$, is continuous;
 - $f \times g$ is continuous;
 - If $g \neq 0$ over I , f/g is continuous;
 - **If g is continuous over $f(I)$, $h(x) = g \circ f(x)$ is continuous.**
 - f^{-1} , if defined, is continuous over $f(I)$.
 - **If f is complex , it is continuous if and only if its real and imaginary parts are.**

- Extreme value theorem:

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous over a segment $[a, b] \subset \mathbb{R}$, then there exist two real numbers c and d in $[a, b]$ such that $f(c)$ is the minimum and $f(d)$ is the maximum value of $f(x)$.

Or

$\exists c, d \in [a, b], \text{such that } f(c) = \inf_{[a,b]} f(x), \text{and } f(d) = \sup_{[a,b]} f(x)$

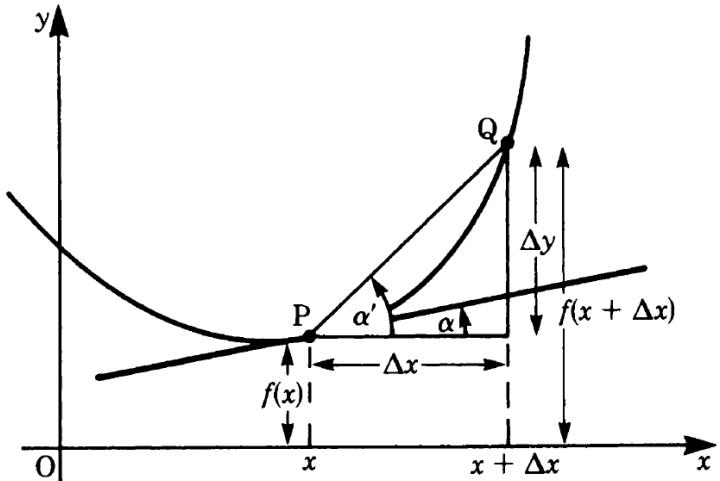
Differentiability

- What matters the most in the study of a function representing a physical model is its values at certain important input, but also how it varies as the input argument is changed.

- The variation of a curve can be locally approximated by the slope joining two points of the curve near-by.

- As the distance $\Delta x \rightarrow 0$, we approach the tangent of the function:

$$\tan \alpha = \lim_{\alpha' \rightarrow \alpha} \tan \alpha' = \lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$



- If the difference quotient $\Delta y/\Delta x$ has a limit as $\Delta x \rightarrow 0$, this limit is called the derivative or differential coefficient of the function $y = f(x)$ with respect to x and we write:

$$y' = f'(x) = \frac{dy}{dx} = \frac{d}{dx} f(x) = \lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

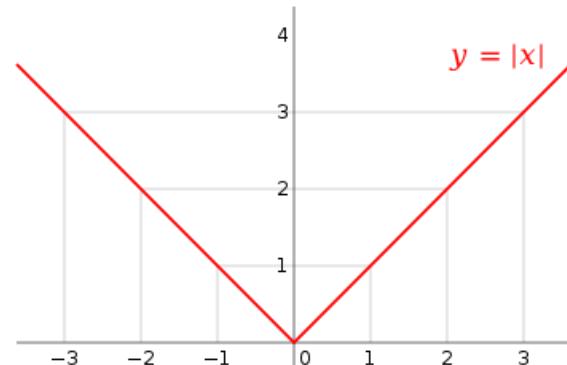
- More rigorously, a function $f: I \rightarrow \mathbb{R}$ with $I \subset \mathbb{R}$, is differentiable at $x \in I$ if:

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall h \in I, |h| < \alpha \Rightarrow \left| \frac{f(x + h) - f(x)}{h} - l \right| < \varepsilon$$

$$l = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} = f'(x)$$

Differentiability

- A function f as defined earlier can be right and / or left differentiable if $\frac{f(x+h)-f(x)}{h}$ admits a right and left limit respectively.
- **Corollary:** f is differentiable at $a \in I$ if it is right and left differentiable, and the values are equal.
- **If a function is differentiable at point a, it is continuous at a.**
- The reverse is not true !
- Important immediate results:
 - f is increasing (decreasing) over a domain I if and only if $\forall x \in I, f'(x) > 0$ ($f'(x) < 0$).
- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and monotonic over a segment $[a, b] \subset \mathbb{R}$, it then takes all the values within $[\inf(f(a), f(b)), \sup(f(a), f(b))]$.
- **The Rolle theorem:** if f is a function defined over $[a, b] \subset \mathbb{R}$, continuous and differentiable, and if $f(a) = f(b)$, then $\exists c \in]a, b[, f'(c) = 0$.
- **Cauchy's mean value theorem:** If f, g are two functions defined over $[a, b] \subset \mathbb{R}$, continuous over $[a, b]$ and differentiable over $]a, b[$, then $\exists c \in]a, b[$, such that:



$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$$

L'Hôpital rule

- The Hôpital rule: It states that the limit, when we divide one function by another is the same after we take the derivative of each function (under certain conditions...).

- If :

- f and g are two functions, differentiable over an interval I , not necessarily at c ;
- g' is not zero around c (for all $x \neq c$)
- We have : $\lim_{x \rightarrow c} f(x) = \lim_{x \rightarrow c} g(x) = 0$ or $\pm \infty$
- $\lim_{x \rightarrow c} \frac{f'(x)}{g'(x)}$ exists:

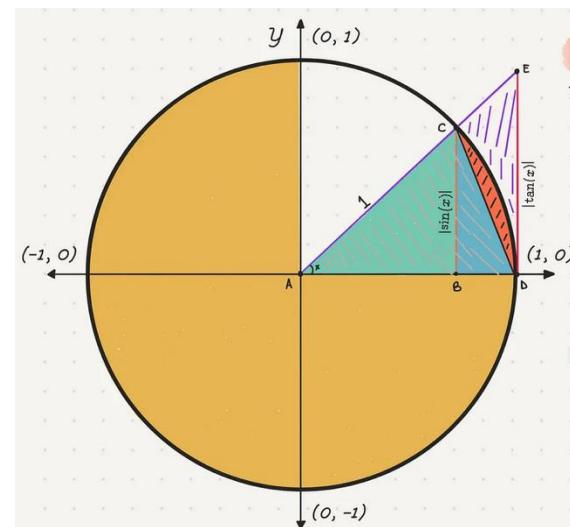
$$\lim_{x \rightarrow c} \frac{f(x)}{g(x)} = \lim_{x \rightarrow c} \frac{f'(x)}{g'(x)}$$

- The rule also applies for $x \rightarrow \infty$

- Examples:

- $\lim_{x \rightarrow 0} \frac{\sin(x)}{x}$
- $(\sin(x))'$ from the definition of the differential

G. de L'Hôpital
(1661-1704)



Differentiability

- We saw that the differential is a form of linear approximation of a function (linearization): the equality is exact when we take the limit:

$f(x + h) \approx f(x) + hf'(x)$, which we can also write: $f(x + h) = f(x) + hf'(x) + o(h)$
 with $\lim_{h \rightarrow 0} \frac{o(h)}{h} = 0$

- From the fundamental definition, several operations on the differentiation of functions can be demonstrated:

General rules	Function $y = f(x)$	Derivative $y' = f'(x)$
1. Constant factor	$y = cf(x)$	$y' = cf'(x)$
2. Sum (algebraic) rule	$y = u(x) + v(x)$	$y' = u'(x) + v'(x)$
3. Product rule	$y = u(x)v(x)$	$y' = u'(x)v(x) + u(x)v'(x)$
4. Quotient rule	$y = \frac{u(x)}{v(x)}$	$y' = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$
5. Chain rule	$y = f[g(x)]$	$y' = \frac{df}{dg} g'(x) = f'(g(x)) \times g'(x)$
6. Inverse functions	$y = f^{-1}(x)$ i.e. $x = f(y)$	$y' = \frac{1}{dx/dy} = \frac{1}{f'(y)}$ Or: $(f^{-1})' = \frac{1}{f'(f^{-1}(x))}$

Common functions

- A *power function* is a function that can be represented in the form $f(x) = kx^\alpha$, where k and α are real numbers, and k is known as the *coefficient*.

They are continuous functions and can be differentiated until the derivative is null.

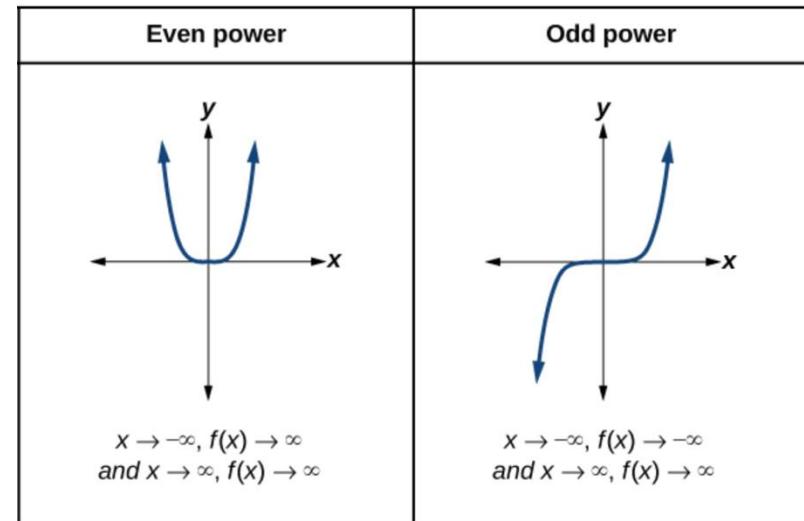
- One can show that from the definition of the differentiability of a function that:

$$\forall \alpha \in \mathbb{R}, f'(x) = \alpha kx^{\alpha-1}$$

These functions are the basis of polynomials.

- Exponential functions:

Function of the form $f: \mathbb{R} \text{ (or } \mathbb{C}) \rightarrow \mathbb{R} \text{ (or } \mathbb{C})$
 $f(x) = a^x$



- From the fundamental definition of the differentiability of a function, we can find the derivative of exponential functions, and find a number e for which $(e^x)' = e^x$
- e is defined as: $e = \lim_{n \rightarrow \infty} \left(1 + \frac{1}{n}\right)^n$
- We can deduct immediately that, defining the function $x \in \mathbb{R}, \ln(x) = (e^x)^{-1}$, $(\ln(x))' = \frac{1}{x}$.

Common derivatives

Derivatives of fundamental functions	Function $y = f(x)$	Derivative $y' = f'(x)$
1. Constant factor	$y = \text{constant}$	$y' = 0$
2. Power function	$y = x^n$	$y' = nx^{n-1}$
3. Trigonometric functions	$y = \sin x$	$y' = \cos x$
	$y = \cos x$	$y' = -\sin x$
	$y = \tan x$	$y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$
	$y = \cot x$	$y' = \frac{-1}{\sin^2 x} = -1 - \cot^2 x$
4. Inverse trigonometric functions	$y = \sin^{-1} x$	$y' = \frac{1}{\sqrt{1-x^2}}$
	$y = \cos^{-1} x$	$y' = -\frac{1}{\sqrt{1-x^2}}$
	$y = \tan^{-1} x$	$y' = \frac{1}{1+x^2}$
	$y = \cot^{-1} x$	$y' = -\frac{1}{1+x^2}$

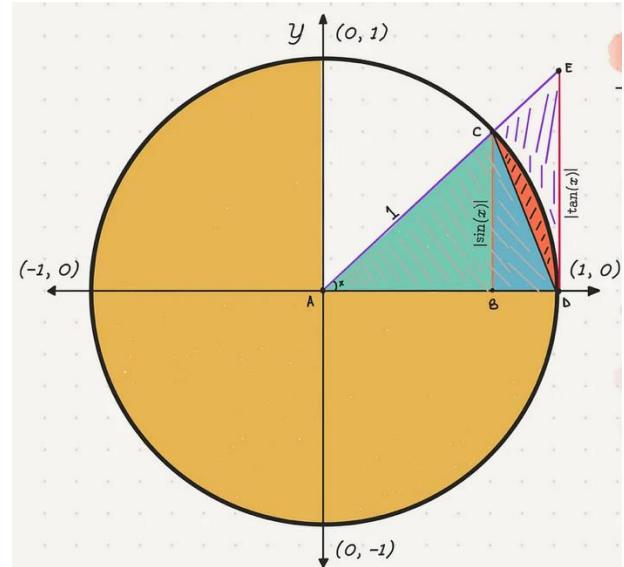
Common derivatives

Derivatives of fundamental functions	Function $y = f(x)$	Derivative $y' = f'(x)$
5. Exponential function	$y = e^x$	$y' = e^x$
Logarithmic function	$y = \ln x$	$y' = \frac{1}{x}$
6. Hyperbolic trigonometric functions	$y = \sinh x$	$y' = \cosh x$
	$y = \cosh x$	$y' = \sinh x$
	$y = \tanh x$	$y' = \frac{1}{\cosh^2 x} = 1 - \tanh^2 x$
	$y = \coth x$	$y' = \frac{1}{\sinh^2 x} = 1 - \coth^2 x$
7. Inverse hyperbolic trigonometric functions	$y = \sinh^{-1} x$	$y' = \frac{1}{\sqrt{1+x^2}}$
	$y = \cosh^{-1} x$	$y' = \frac{1}{\sqrt{x^2-1}} \quad (x > 1)$
	$y = \tanh^{-1} x$	$y' = \frac{1}{1-x^2} \quad (x < 1)$
	$y = \coth^{-1} x$	$y' = -\frac{1}{x^2-1} \quad (x > 1)$

Common derivatives

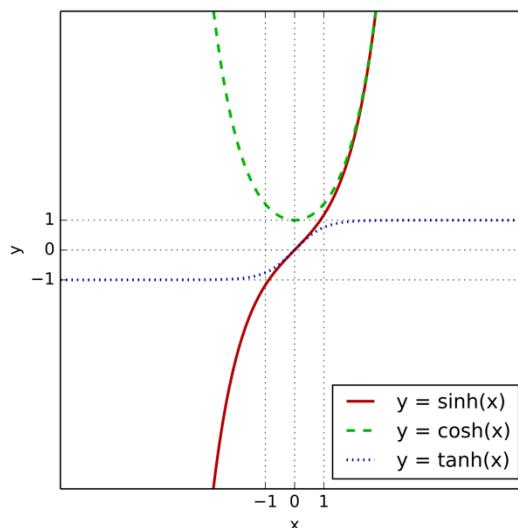
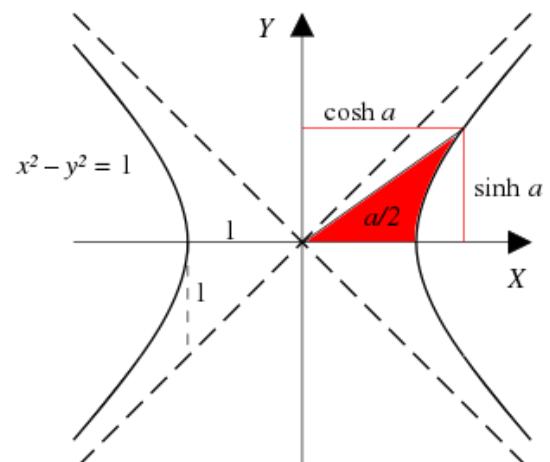
- Examples: $\sin(x)$, a^x , $\log_a(x)$, $\cosh^{-1}(x)$

- $\frac{d}{dx}(\sin(x)) = \cos(x)$
- $\frac{d}{dx}(a^x) = a^x(\ln(a))$
- $\frac{d}{dx}(\log_a(x)) = \log_a(e) \frac{1}{x}$



- Hyperbolic functions:

- $\cosh(x) = \frac{e^x + e^{-x}}{2}$
- $\sinh(x) = \frac{e^x - e^{-x}}{2}$
- $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$
- $\cosh^2(x) - \sinh^2(x) = 1$
- $\frac{d}{dx}(\cosh^{-1}(x)) = \frac{1}{\sqrt{x^2-1}}$



Differentiability

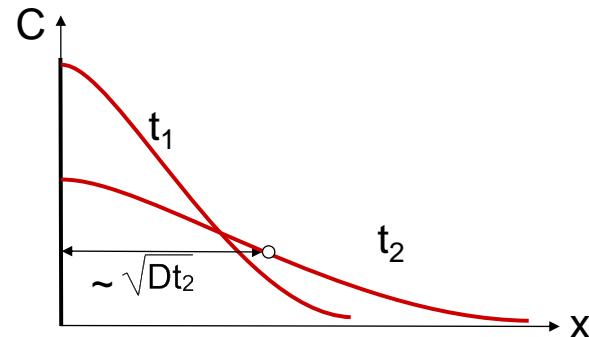
- From the fundamental definition, several operations on the differentiation of functions can be demonstrated

General rules	Function $y = f(x)$	Derivative $y' = f'(x)$
1. Constant factor	$y = cf(x)$	$y' = cf'(x)$
2. Sum (algebraic) rule	$y = u(x) + v(x)$	$y' = u'(x) + v'(x)$
3. Product rule	$y = u(x)v(x)$	$y' = u'(x)v(x) + u(x)v'(x)$
4. Quotient rule	$y = \frac{u(x)}{v(x)}$	$y' = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$
5. Chain rule	$y = f[g(x)]$	$y' = \frac{df}{dg} g'(x) = f'(g(x)) \times g'(x)$
6. Inverse functions	$y = f^{-1}(x)$ i.e. $x = f(y)$	$y' = \frac{1}{dx/dy} = \frac{1}{f'(y)}$ Or: $(f^{-1})' = \frac{1}{f'(f^{-1}(x))}$

- Example: one solution of the diffusion equation: $\frac{\partial c(x,t)}{\partial t} = D \frac{\partial^2 c(x,t)}{\partial x^2}$

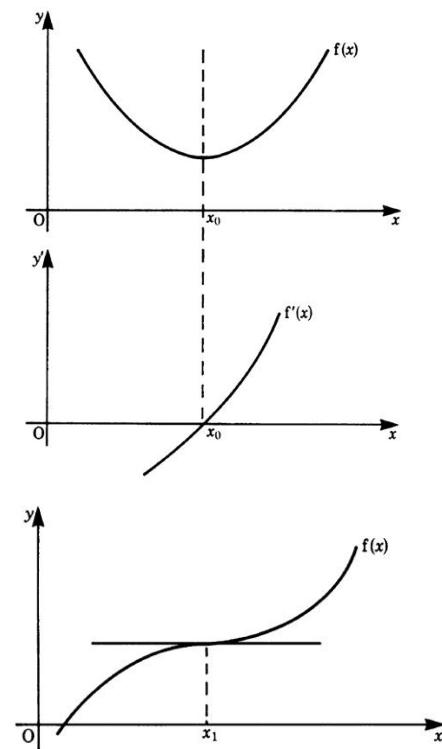
Doping Si with P or B to create p-n junctions

$$c(x, t) = \frac{A}{\sqrt{t}} e^{-\frac{x^2}{4Dt}}$$



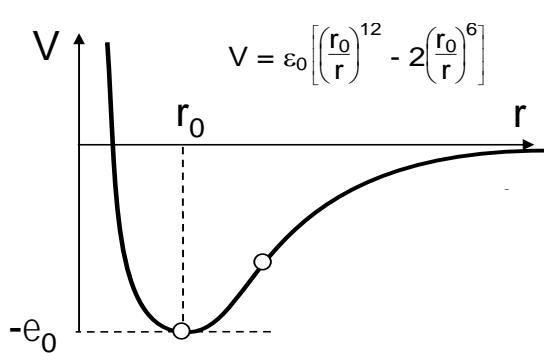
Maximum, minimum, inflexion

- Successive derivatives can help evaluate in a finer way the change of functions, and in particular if they have a maximum or a minimum locally.
- For a function to have an extremum at a point x_0 , it is necessary that $f'(x_0) = 0$. It is however not sufficient.
- It must also be such that $f''(x_0) > 0$ (convex) or $f''(x_0) < 0$ (concave).
- A point of inflection is such that $f''(x_0) = 0$, marking where the concavity of a function changes.
We must also have $f'''(x_0) \neq 0$ (for example $f(x) = (x - 1)^4$).

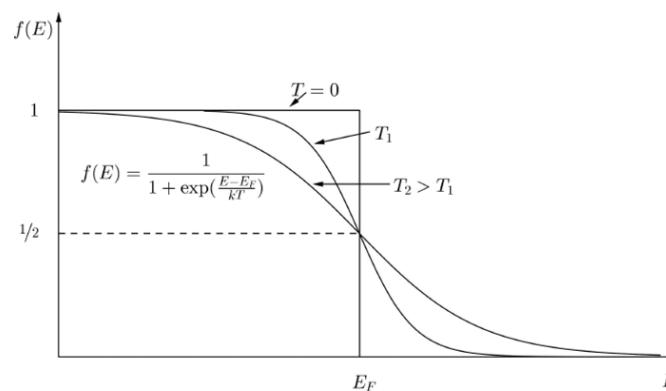


Examples:

Lennard-Jones potential: bonds



Electrons Occupancy



Taylor Series and Taylor expansion

- We saw that the differential is a form of linear approximation of a function (linearization): the equality is exact when we take the limit:

$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$, which we can also write:

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \Delta x h(\Delta x) \text{ with } \lim_{\Delta x \rightarrow 0} h(\Delta x) = 0$$

- The error is however quickly large as we move away from x . A better approximation can be obtained with a higher degree polynomial

Taylor-Lagrange

For a function at least $n+1$ times differentiable ($n \in \mathbb{N}$), defined over an interval $[a, b] \subset \mathbb{R}$, (The $(n+1)$ th derivative needs to exist only in $]a, b[$), then $\exists c \in]a, b[$ such that:

$$f(b) = f(a) + (b - a)f'(a) + \frac{(b - a)^2}{2!}f''(a) + \dots + \frac{(b - a)^n}{n!}f^{(n)}(a) + \frac{(b - a)^{n+1}}{(n + 1)!}f^{(n+1)}(c)$$

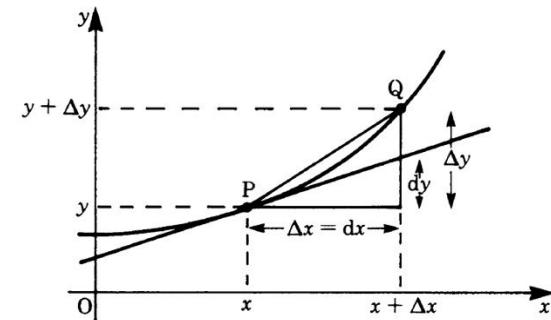
- Hint of demo: consider the function

$$\varphi : [a, b] \rightarrow \mathbb{R} \quad x \mapsto f(b) - f(x) - (b - x)f'(x) - \dots - \frac{(b - x)^n}{n!}f^{(n)}(x) - A\frac{(b - x)^{n+1}}{(n + 1)!},$$

It is continuous and differentiable.

$$\text{We have: } \varphi(a) = \varphi(b) = 0 \text{ and } \forall x \in]a, b[, \quad \varphi'(x) = -\frac{(b - x)^n}{n!}f^{(n+1)}(x) + A\frac{(b - x)^n}{n!}$$

From Rolle's theorem, $\exists c \in]a, b[$ such that $\varphi'(c) = 0$. Hence the result.



Taylor Series and Taylor expansion

- Let's consider the domain of definition of f , $I \subset \mathbb{R}$, that includes 0, and an arbitrary point x in this interval. We can re-write the Taylor Lagrange polynomial what is called the Maclaurin form (with $c \in]0, x[$):

$$\forall x \in I, f(x) = \sum_{k=0}^n \frac{x^k}{k!} f^{(k)}(0) + \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

$R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)$ is called the remainder of the Taylor polynomial $\sum_{k=0}^n \frac{x^k}{k!} f^{(k)}(0)$.

- This remainder is small, and hence the function is well approximated by the Taylor polynomial, in two situations:

Taylor Expansion

x is close to 0

For all n , the polynomial is a **local** approximation of the function around 0.

The approximation globally improves as the degree of the polynomial increases for small x .

Taylor Series

n is large ($n \rightarrow \infty$)

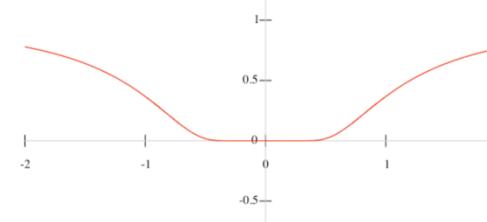
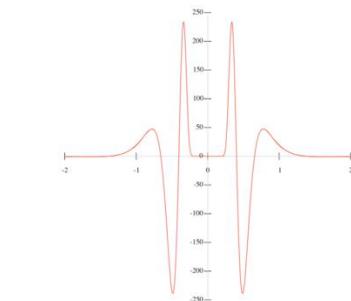
For all x , the polynomial is a **global** approximation of the function over a certain domain where the series $\sum_{k=0}^{\infty} \frac{x^k}{k!} f^{(k)}(0)$ Converges.

Taylor Series

- Taylor series is a wonderful tool to express all functions as polynomials which are regular and easy functions to manipulate.
- For all x , the polynomial is a **global** approximation of the function over a certain domain where the series $\sum_{k=0}^{\infty} \frac{x^k}{k!} f^{(k)}(0)$ converges.
- However, not all functions can be expanded as a Taylor (or Maclaurin) series, and the convergence only happens within certain values of x .

- Examples:

- $e^{-\frac{1}{x^2}}$ has all its n th differential null at 0.



- One intuitive way to evaluate the convergence is to look at the behavior of the remainder.
- If : $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, \forall x \in I, |f^{(n+1)}(x)| \leq M$, then $\forall n \in \mathbb{N}, |R_n(x)| \leq M \frac{x^{n+1}}{(n+1)!} \rightarrow 0$ as $n \rightarrow \infty$

With two consequences:

- $f(x) = \sum_{k=0}^n \frac{x^k}{k!} f^{(k)}(0) + o(x^n)$ for x small, close to 0.
 - The series converges towards $f(x)$: $|f(x) - \sum_{k=0}^n \frac{x^k}{k!} f^{(k)}(0)| \leq M \frac{x^{n+1}}{(n+1)!} \rightarrow 0$ as $n \rightarrow \infty$
 - Hence functions with points of divergence within a domain will be problematic:

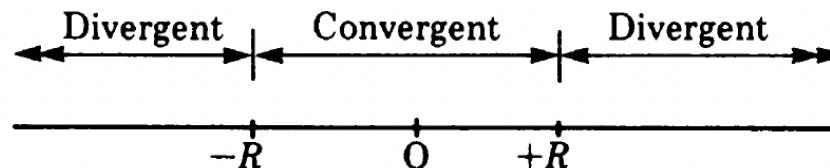
$$f(x) = (x - 1)^{3/2}$$

Taylor Series - Convergence

- There are different tests that can assess the convergence of a series:
 - Ratio test: one looks at the behaviour of the ratio of two following sequence number in the series as n goes to infinity.
 - At a point x for a Taylor series, this gives:

$$a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n + a_{n+1}x^{n+1} + \cdots \quad \text{The ratio is: } \frac{a_{n+1}x^{n+1}}{a_nx^n}$$

- Taking the limit: $\lim_{n \rightarrow \infty} \left| \frac{a_{n+1}}{a_n} x \right| = \frac{|x|}{R}$ where $R = \lim_{n \rightarrow \infty} \left| \frac{a_n}{a_{n+1}} \right|$
- The series is absolutely convergent if $|x| < R$ and divergent if $|x| > R$. Hence a power series is convergent in a definite interval $(-R, R)$ and divergent outside this interval.



- Examples: $e^x, \frac{1}{1-x}$
- Other convergence tests exist like the Cauchy-Hadamar: $\frac{1}{R} = \lim_{n \rightarrow \infty} \sqrt[n]{|a_n|}$

Taylor series and expansion

Maclaurin series valid over \mathbb{R}

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$$

$$\arcsin(x) = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \dots + \frac{1 \cdot 3 \dots (2n-1)}{2 \cdot 4 \dots (2n)} \frac{x^{2n+1}}{2n+1} + \dots$$

$$\exp(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

$$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$(1+x)^\alpha = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

Taylor expansion around 0 at the order n:

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+2})$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+2})$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2p}}{(2p)!} + o(x^{2p+1})$$

Euler formula:

- These expressions are true also for complex arguments !
- Comparing: $e^{ix}, \cos(x), i\sin(x)$, one sees quickly that indeed: $e^{ix} = \cos(x) + i\sin(x)$

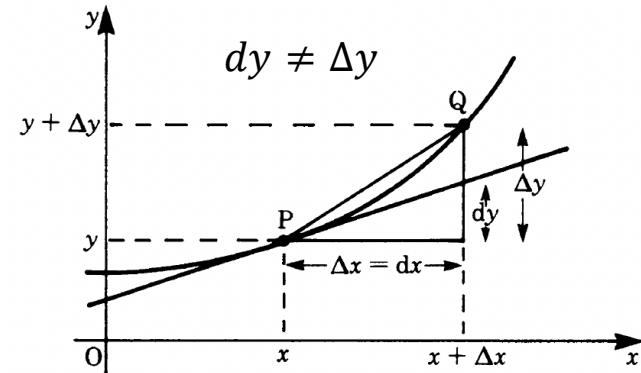
Taylor Expansion

- Taylor expansion does not worry about convergence: as long as a function is n-times differentiable around an argument, it can be approximated (more or less well) by the Taylor expansion.
- Note that it is an approximation ! The differential is an exact value of a slope when, one takes the limit.

$f(x + \Delta x) \approx f(x) + f'(x)\Delta x$, which we can also write:

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \Delta x h(\Delta x) \text{ with } \lim_{\Delta x \rightarrow 0} h(\Delta x) = 0$$

$$\frac{dy}{dx} = \lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \quad \Delta y = f(x + \Delta x) - f(x)$$

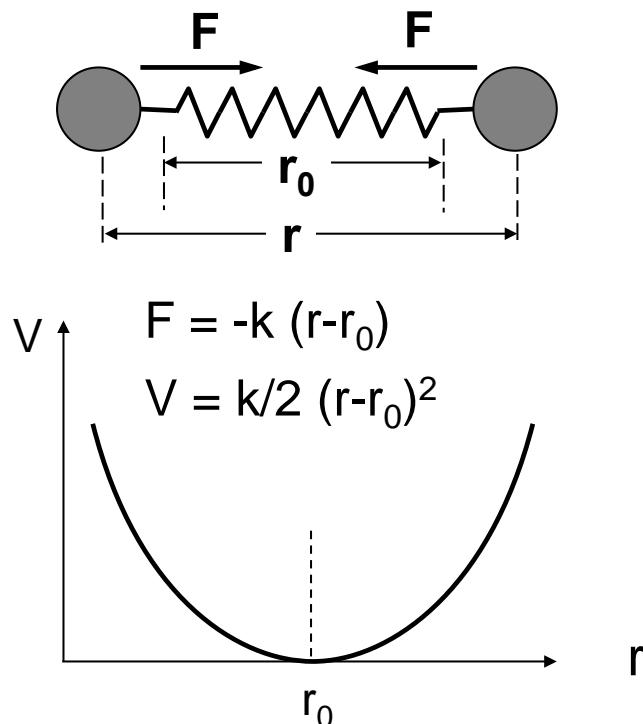


- From the Taylor series, one can extract the expansion to a first few orders:
Example for the second order: $f(x + h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + o(h^2)$
- The approximation improves usually at higher order:
 - Zero-th order: the function is constant, locally approximated to its value at 0 (or other)
 - First order: linear approximation that is very often used in engineering;
 - Second order: quadratic approximation also widely used, often when $f'(0) = 0$.

Physical representation of chemical bonds

A simple model to physically apprehend the bond between atoms: the Lennard-Jones potential.

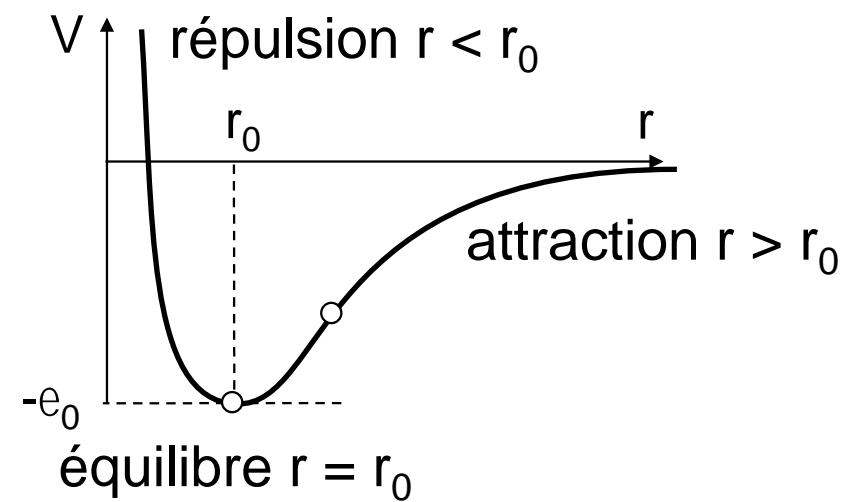
A Conservative force (the work done on an object does not depend on the object's path) can be derived from this potential:



$$\vec{F} = -\overline{\text{grad}} V$$

Potential of Lennard-Jones:

$$V = \varepsilon_0 \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^6 \right]$$



Physical representation of chemical bonds

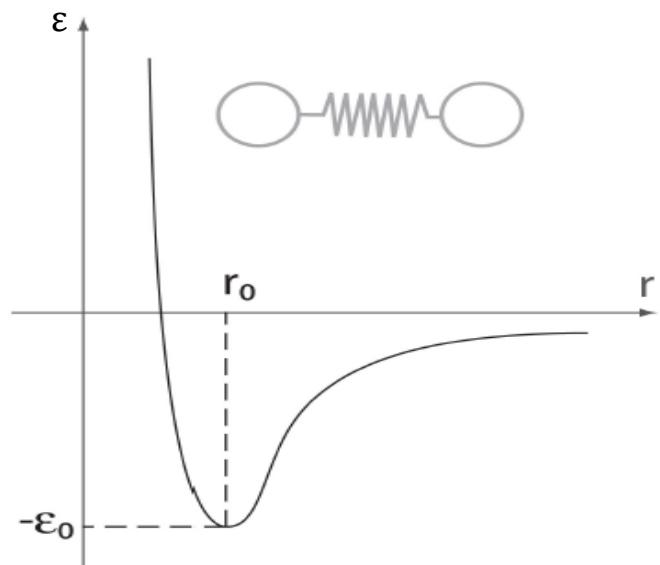
- A gradient is a vector that looks into the change of a quantity over the different directions:

$$\vec{F} = -\overrightarrow{grad}V = -\frac{\partial V}{\partial x}\vec{x} - \frac{\partial V}{\partial y}\vec{y} - \frac{\partial V}{\partial z}\vec{z}$$

- Along a vector \vec{e}_r and a distance called r , we have:

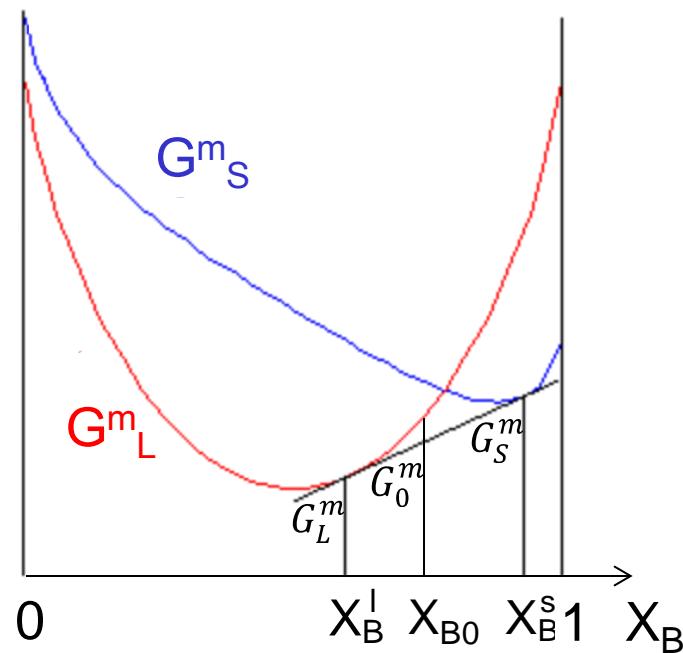
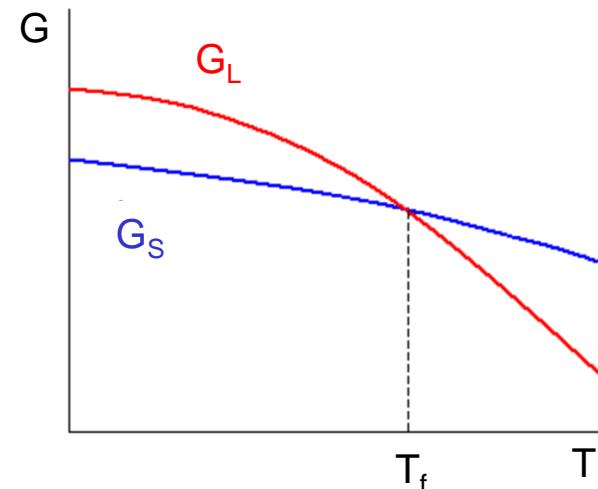
$$\vec{F} = -\frac{\partial V}{\partial r}\vec{e}_r$$

- The derivative has hence a lot of physical meaning: for small r , when atoms get close to each other, the potential increases significantly, from which derives a force that is repulsive, away from the increase of the energy, hence the minus sign in front of the gradient.
- As atoms are pulled apart, an attractive force brings the atoms back together into a more stable, low energy state.
- At the equilibrium condition, the forces equalize and the change of potential is zero.



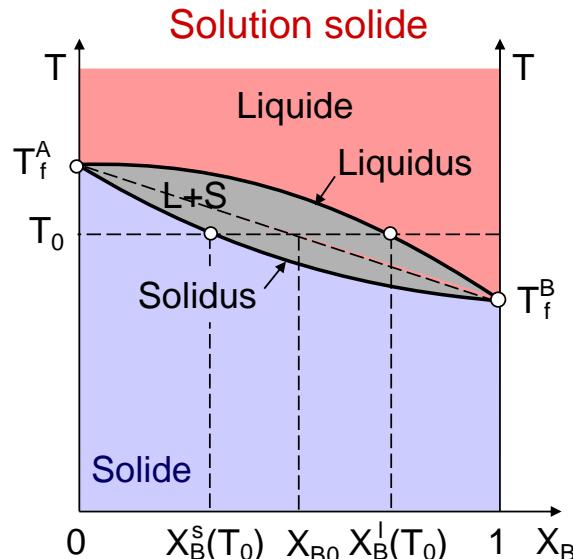
Tangents in Materials Science: Binary Systems

- The equilibrium of a thermodynamic system is driven by the minimization of the Gibbs free energy (at T and P constant).
- For a unitary system, the molar free enthalpy as a function of temperature looks like this:



- For a binary system of species A and B (Cu and Ni for example) with $n_{tot} = n_A + n_B$
- $$X_{A0} = \frac{n_A}{n_{tot}} \quad X_{B0} = \frac{n_B}{n_{tot}}$$
- the system can separate into two different phases of different composition to minimise the free enthalpy.

Binary Systems with full Solubility



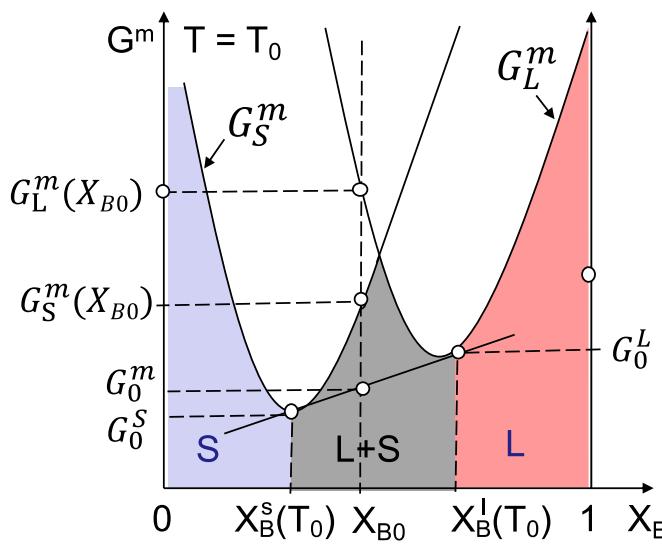
- At $T = T_0$, the Gibbs free energy of the liquid solution at X_{B0} is higher than the one for the solid phase. We can then expect the system to be in the solid state.
- The system has however an alternative possibility to further reduce its free energy: put a fraction χ_s in the solid phase, and a fraction χ_l in the liquid phase (with $\chi_s + \chi_l = 1$).
- By taking the common tangent of the molar Gibbs energy for the solid (G_S^m) and the liquid (G_L^m), we can find the proportion of B in the liquid ($X_B^L(T_0)$) and the solid ($X_B^S(T_0)$) phases.
- The molar Gibbs free energy is then given by:

$$G_0^m = \chi_s G_0^S + \chi_l G_0^L < G_S^m(X_{B0})$$

- By computing the slope of the tangent, we have:

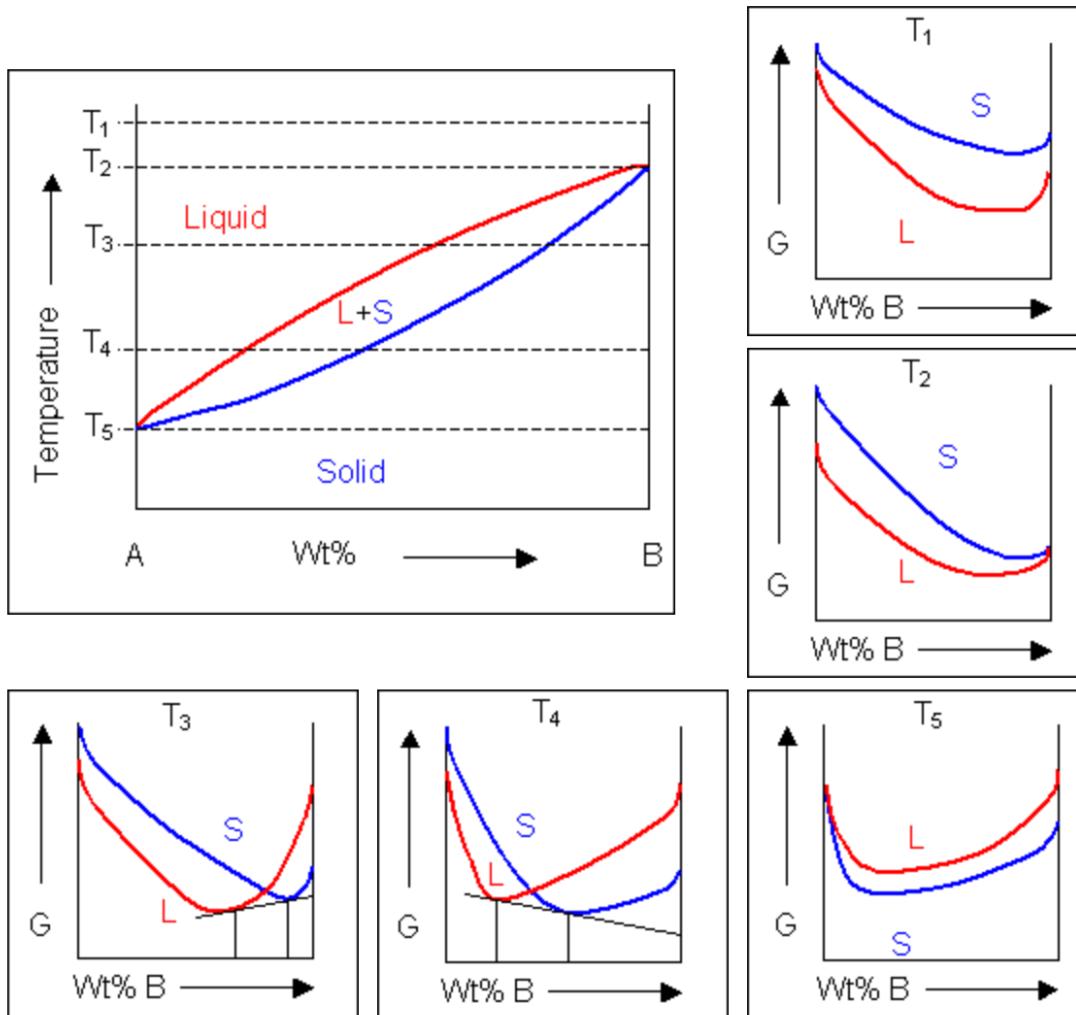
$$G_0^m = \frac{X_B^L - X_{B0}}{X_R^L - X_R^S} G_0^S + \frac{X_{B0} - X_B^S}{X_R^L - X_R^S} G_0^L$$

- Which enables to recover the lever rule.

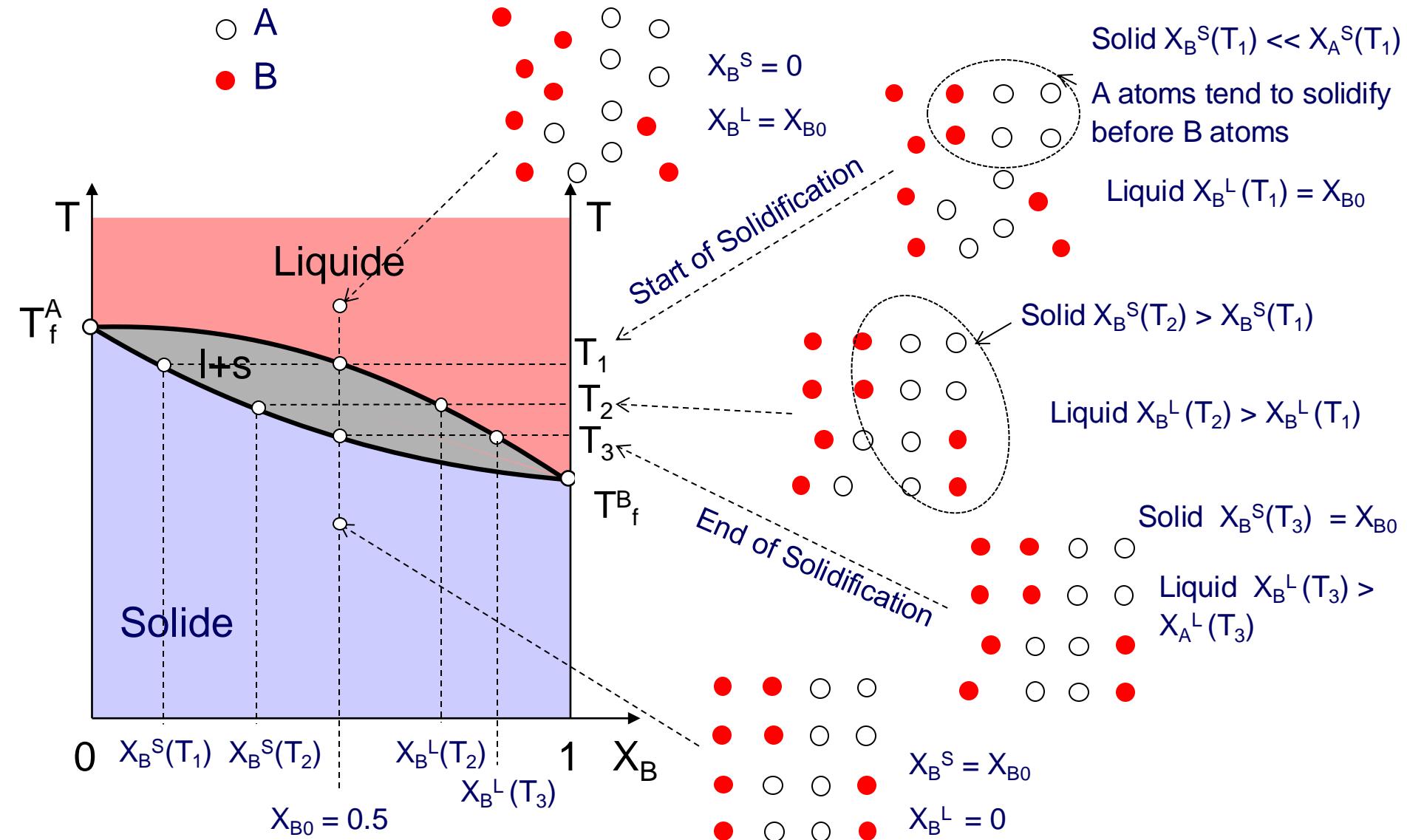


Binary Systems with full Solubility

- From the Gibbs free energy curves as a function of X_B at different temperatures, we can then reconstruct the phase diagram for all temperatures.



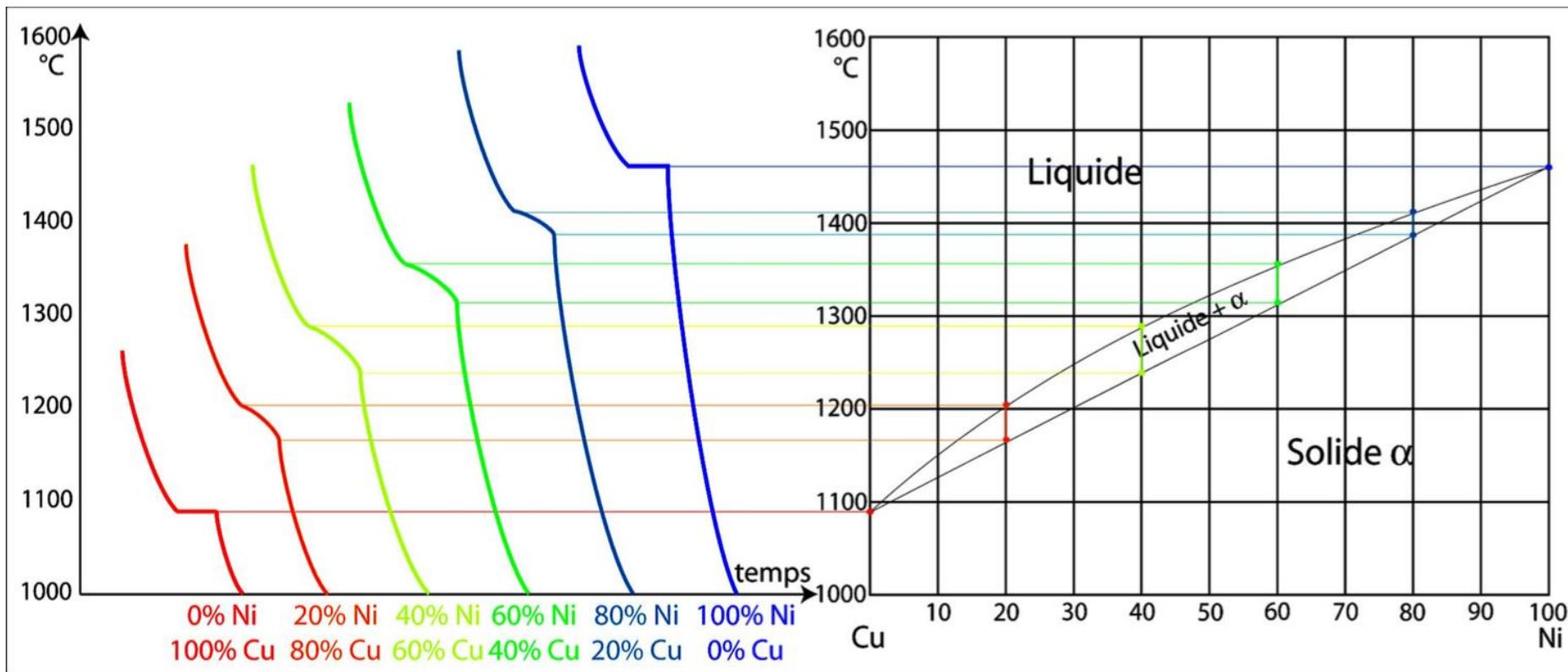
Binary Systems with full Solubility



Binary Systems with full Solubility

Example: solidification curves for the diagram Cu-Ni that enables to create the phase diagram.

Note that contrary to unitary systems, the phase change do not occur at a single T.



SUMMARY

- We presented the concept of functions and defined limits, continuity and derivability.
- We focused on differentiability and in particular the tangent of a function.
- We showed how the fundamental definition of the differentiability of a function can be used to find the derivative of some common functions.
- We reminded the L'Hôpital rule.
- We introduced Taylor expansion and Taylor series.
- We introduced the need for the common tangent construction in phase diagrams, and gave an example of an exponential function in the Lennard-Jones potential.
- Next week
 - We will discuss parametric functions and integration.
 - We will also discuss multi-variable functions
 - We will derive the diffusion equation