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Overview

▪ Origin of functions 

▪ Limits and Continuity

▪ Differentiability and Taylor Expansions

▪ First results on important functions

     (parts of chapters 3, 4 and 5 of the book)

▪ Binary phase diagrams

▪ Lennard-Jones potential (with Prof. Carter)
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▪ The concept of Functions has been developed slowly over centuries of discoveries, and it is 

hard to bring forward one particular mathematician associated with it. 

▪ In 1755, in his Institutiones calculi differentialis, Swiss mathematician Leonhard Euler gave 

a more general concept of a function that is very close to our modern understanding: 

“When certain quantities depend on others in such a way that they undergo a change when the latter 
change, then the first are called functions of the second. This name has an extremely broad character; it 

encompasses all the ways in which one quantity can be determined in terms of others.”

Leonhard Euler (1707-1783)

The concept of functions

▪ Euler popularized the Greek letter π to denote the ratio of a circle's circumference to its diameter, was the 

first using the notation f(x) for the value of a function, the letter i to express the imaginary unit, the Greek 
letter Σ to express summations, the Greek letter Δ for finite differences. He gave the current definition of the 
constant e, the base of the natural logarithm, now known as Euler's number. 

https://en.wikipedia.org/wiki/Institutiones_calculi_differentialis
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The concept of functions

▪ Given two sets of real numbers, a domain (often referred to as the x-values, and interval I) 

and a co-domain (often referred to as the y-values), a real function assigns to each x-value 

a unique y-value.
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▪ 𝑓 𝑥 = ln(𝑥 − 1) is not defined for 𝑥 ≤ 1. It is injective 

and surjective from 𝐼 = 1, +∞  𝑡𝑜 ℝ. 

▪ The domains of definition are hence very important 

when defining the properties of functions : physically 

but also mathematically !
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𝑓 𝑥 = ln(𝑥 − 1)

▪ Injective function (or injection): function f that maps distinct 

elements of its domain to distinct elements; that is, f(x1) = f(x2) 

implies x1 = x2.

▪ Surjective functions (or surjection): a function f such that every 

element y can be mapped from element x so that f(x) = y.

▪ Example: the function 𝑓 𝑥 = 𝑥2 is injective and surjective (ie 

bijective) from 𝐼 = ℝ+ 𝑡𝑜 ℝ+ . It is not injective from 𝐼 = ℝ 𝑡𝑜 ℝ+, 

and not surjective 𝐼 = ℝ 𝑡𝑜 ℝ−. 



5

The concept of functions

▪ Functions defined on a domain, often a part  I ⊂ ℝ, form an associative and commutative 

ℝ-algebra (often denoted 𝐾𝐼 ) with the common addition, multiplication, and the product of a 

function with a scalar

▪ Other definitions: 

o Composition: if a function f is defined from I to X, and g is defined over X, then one can 

define the function ∀𝑥 ∈ 𝐼, ℎ 𝑥 = 𝑔𝑜𝑓 𝑥 . 
o 𝑓−1 is the inverse of 𝑓 and is defined such that 𝑓−1𝑜𝑓 = 𝑓𝑜𝑓−1 = 𝐼𝑑  (the identity function). 

o A function is even (odd) if ∀𝑥 ∈ 𝐼, 𝑓 𝑥 = 𝑓 −𝑥  (𝑓 𝑥 = −𝑓 −𝑥 )
o Periodicity: f is periodic of period T if ∀𝑥 ∈ 𝐼, 𝑓 𝑥 + 𝑇 = 𝑓 𝑥 .

▪ Limits of real functions: 

▪ A function 𝑓: 𝐼 → ℝ with I including +∞, admits 𝑙 for limit when 𝑥 goes to infinity if and 

only if

∀𝜀 > 0, ∃𝐴 > 0, ∀𝑥 ∈ 𝐼, (𝑥 ≥ 𝐴 ⟹ 𝑓 𝑥 − 𝑙 < 𝜀)

▪ A function 𝑓: 𝐼 → ℝ with I including +∞ , admits +∞ for limit when 𝑥 goes to infinity if 

and only if

∀𝐴 > 0, ∃𝐴′ > 0, ∀𝑥 ∈ 𝐼, (𝑥 ≥ 𝐴′ ⟹ 𝑓(𝑥) ≥ 𝐴)
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The important notion of limits

▪ Limits of functions at finite values are very important and can be defined by looking at the 

limit of sequences: 

▪ A function 𝑓: 𝐼 → ℝ (or other domain) admits 𝑙 for limit in a point 𝑎 ∈ 𝐼 if and only if 

For all sequence (𝑢𝑛)𝑛∈ℕ such that lim
𝑛→∞

𝑢𝑛 = 𝑎 , lim
𝑛→∞

𝑓(𝑢𝑛) = 𝑙.

▪ One can express this without sequences: 

∀𝜀 > 0, ∃𝛼 > 0, ∀𝑥 ∈ 𝐼, 𝑥 − 𝑎 < 𝛼 ⟹ 𝑓 𝑥 − 𝑙 < 𝜀

▪ Like for Sequences: 

o If f is increasing (decreasing) and has an upper bound (lower bound), then it 

converges.

o If f is increasing (decreasing) and has no upper bound (lower bound), then it tends to 

+ ∞ −∞ .
 

▪ Functions can diverge to ±∞ at finite values of the argument: 

Divergence to +∞:  ∀𝐴 > 0, ∃𝛼 > 0, ∀𝑥 ∈ 𝐼, 𝑥 − 𝑎 < 𝛼 ⟹ 𝑓(𝑥) ≥ 𝐴 

Divergence to −∞:    ∀𝐵 < 0, ∃𝛼 > 0, ∀𝑥 ∈ 𝐼, 𝑥 − 𝑎 < 𝛼 ⟹ 𝑓(𝑥) ≤ 𝐵 
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Right and Left limits

▪ The concepts of limits and continuity of functions are essential in Materials Science. 

▪ To apprehend it, it is essential to distinguish the limit when we approach a real number l from 

a sequence greater or smaller than l. 

Lennard-Jones potential: bonds  First order phase transitionElectrons Occupancy

▪ 𝑓: 𝐼 → ℝ (or other domain) admits a right limit 𝑙 at a point 𝑎 ∈ 𝐼 if and only if 

For all sequence (𝑢𝑛)𝑛∈ℕ such that lim
𝑛→∞

𝑢𝑛 = 𝑎 and ∀𝑛 ∈ ℕ 𝑢𝑛 > 𝑎, lim
𝑛→∞

𝑓(𝑢𝑛) = 𝑙.

One can express this without sequences: 

𝑓: 𝐼 → ℝ has a right limit 𝑙 at 𝑎 ∈ 𝐼 if: 

∀𝜀 > 0, ∃𝛼 > 0, ∀𝑥 ∈ 𝐼, 0 < 𝑥 − 𝑎 ≤ 𝛼 ⟹ 𝑓 𝑥 − 𝑙 < 𝜀 Notation: lim
𝑥→𝑎+

𝑓 𝑥 = 𝑙

𝑓: 𝐼 → ℝ has a left limit 𝑙 at 𝑎 ∈ 𝐼 if: 

∀𝜀 > 0, ∃𝛼 > 0, ∀𝑥 ∈ 𝐼, 0 < 𝑎 − 𝑥 ≤ 𝛼 ⟹ 𝑓 𝑥 − 𝑙 < 𝜀 Notation: lim
𝑥→𝑎−

𝑓 𝑥 = 𝑙
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is bounded around a

Results of limits

▪ For λ, 𝑙, 𝑙′ ∈ ℂ3, 𝑓, 𝑔: 𝐼 → ℝ f,g admit 𝑙 and 𝑙′ as limit at a point 𝑎 ∈ 𝐼 respectively:  

▪ If 𝑓 is complex, then: 
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Continuous functions

▪ A function is continuous if arbitrarily small changes in its value can be assured by restricting 

to sufficiently small changes of its argument. 

▪ A function 𝑓: 𝐼 → ℝ with 𝐼 ⊂ ℝ, f is continuous at the point 𝑥0 ∈ 𝐼 if:

∀𝜀 > 0, ∃𝛼 > 0, ∀𝑥 ∈ 𝐼, 𝑥 − 𝑥0 < 𝛼 ⟹ 𝑓 𝑥 − 𝑓(𝑥0) < 𝜀

It is equivalent to say that f is continuous at point 𝑥0 ∈ 𝐼 if and only if f has a right and left limit 

at 𝒙𝟎 and the limits are equal. (i.e. f must have 𝑓(𝑥0) as a limit at 𝑥0). 
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Continuous functions

▪ Definition with sequences:

A function 𝑓: 𝐼 → ℝ (or other domain) admits 𝑙 for limit in a point 𝑎 ∈ 𝐼 if and only if :

For all sequence (𝑢𝑛)𝑛∈ℕ such that lim
𝑛→∞

𝑢𝑛 = 𝑎 , lim
𝑛→∞

𝑓(𝑢𝑛) = 𝑓(𝑎)

▪ Important results 

▪ If f and g are two continuous functions over an interval I: 

▪ 𝑓  is continuous

▪ 𝑓 + 𝑔 is also continuous over I, 

▪ 𝜆𝑓, 𝜆 ∈ ℝ 𝑜𝑟 ℂ, is continuous;

▪ 𝑓 × 𝑔 is continuous;

▪ If 𝑔 ≠ 0 over I, 𝑓/𝑔 is continuous;

▪ If 𝒈 is continuous over 𝒇(𝑰), 𝒉 𝒙 = 𝒈𝒐𝒇 𝒙  is continuous. 

▪ 𝑓−1, if defined, is continuous over 𝑓 𝐼 .

▪ If f is complex , it is continuous if and only if its real and imaginary parts are. 

▪ Extreme value theorem: 

If 𝑓: ℝ → ℝ is continuous over a segment 𝑎, 𝑏 ⊂ ℝ , then there exist two real numbers c and 

d in [a, b] such that f(c) is the minimum and f(d) is the maximum value of f(x). 

Or

∃𝑐, 𝑑 ∈ 𝑎, 𝑏 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓 𝑐 = 𝑖𝑛𝑓 𝑎,𝑏 𝑓 𝑥 , 𝑎𝑛𝑑 𝑓 𝑑 = 𝑠𝑢𝑝 𝑎,𝑏 𝑓 𝑥
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▪ What matters the most in the study of a function representing a physical model is its values 

at certain important input, but also how it varies as the input argument is changed. 

Differentiability

▪ The variation of a curve can be locally 

approximated by the slope joining two points of 

the curve near-by. 

▪ As the distance ∆𝑥 → 0, we approach the tangent 

of the function: 

▪ If the difference quotient Δy/Δx has a limit as Δx → 0, this limit is called the derivative or 

differential coefficient of the function 𝑦 =  𝑓 (𝑥) with respect to 𝑥 and we write:

▪ More rigorously, a function 𝑓: 𝐼 → ℝ with 𝐼 ⊂ ℝ, is differentiable at 𝑥 ∈ 𝐼 if:

∀𝜀 > 0, ∃𝛼 > 0, ∀ℎ ∈ 𝐼, ℎ < 𝛼 ⟹
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
− 𝑙 < 𝜀

𝑙 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
= 𝑓′(𝑥)
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Differentiability

▪ A function f as defined earlier can be right and / or left differentiable if  
𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
 admits a right 

and left limit respectively. 

▪ Corollary: f is differentiable at 𝑎 ∈ 𝐼 if it is right and left differentiable, and the values are equal. 

▪ If a function is differentiable at point a, it is continuous at a. 

▪ The reverse is not true !

▪ Important immediate results: 

▪ f is increasing (decreasing) over a domain I if and 

only if ∀𝑥 ∈ 𝐼, 𝑓′ 𝑥 > 0 𝑓′ 𝑥 < 0 .

▪ If 𝑓: ℝ → ℝ is continuous and monotonic over a segment 𝑎, 𝑏 ⊂ ℝ , it then takes all 

the values within inf(𝑓 𝑎 , 𝑓 𝑏 ), sup(𝑓 𝑎 , 𝑓(𝑏) .

▪ The Rolle theorem: if f is a function defined over 𝑎, 𝑏 ⊂ ℝ, continuous and differentiable, 

and if f(a) = f(b), then ∃𝑐 ∈ 𝑎, 𝑏 , 𝑓′ 𝑐 = 0. 

▪ Cauchy’s mean value theorem: If f, g are two functions defined over 𝑎, 𝑏 ⊂ ℝ, 

continuous over 𝑎, 𝑏  and differentiable over 𝑎, 𝑏 , then ∃𝑐 ∈ 𝑎, 𝑏 , such that: 

𝑓 𝑏 − 𝑓 𝑎 𝑔′ 𝑐 = 𝑔 𝑏 − 𝑔 𝑎 𝑓′(𝑐)
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L’Hôpital rule

▪ The Hôpital rule: It states that the limit, when we divide one function by 

another is the same after we take the derivative of each function (under 

certain conditions..). 

G. de L’Hôpital  

(1661-1704)

▪ If : 

o f and g are two functions, differentiable over an interval I, not 

necessarily at c;

o g’ is not zero around c (for all 𝑥 ≠ 𝑐)
o We have : lim

𝑥→𝑐
𝑓 𝑥 = lim

𝑥→𝑐
𝑔 𝑥 = 0 𝑜𝑟 ± ∞

o lim
𝑥→𝑐

𝑓′ 𝑥

𝑔′(𝑥)
 exists:

▪ The rule also applies for 𝑥 → ∞

▪ Examples: 

o  lim
𝑥→0

sin(𝑥)

𝑥

o sin(𝑥) ′ from the definition of the differential



▪ From the fundamental definition, several operations on the differentiation of functions can 

be demonstrated:

= 𝑓′(𝑔 𝑥 ) × 𝑔′(𝑥)

O𝑟: 𝑓−1 ′ =
1

𝑓′(𝑓−1 𝑥 )

Differentiability

14

▪ We saw that the differential is a form of linear approximation of a function (linearization): the 

equality is exact when we take the limit: 

𝑓 𝑥 + ℎ ≈ 𝑓 𝑥 + ℎ𝑓′(𝑥) , which we can also write:  𝑓 𝑥 + ℎ = 𝑓 𝑥 + ℎ𝑓′ 𝑥 + 𝑜 ℎ

with lim
ℎ→0

𝑜(ℎ)

ℎ
= 0



Common functions

▪ A power function is a function that can be represented in the form 𝑓 𝑥 = 𝑘𝑥𝛼 , where 𝑘 and 

𝛼 are real numbers, and 𝑘 is known as the coefficient.

They are continuous functions and can be differentiated until the derivative is null. 

▪ One can show that from the definition of the 

differentiability of a function that: 

 ∀𝛼 ∈ ℝ, 𝑓′ 𝑥 = 𝛼𝑘𝑥𝛼−1

These functions are the basis of polynomials. 

▪ Exponential functions:

Function of the form 𝑓: ℝ 𝑜𝑟 ℂ → ℝ 𝑜𝑟 ℂ
𝑓 𝑥 = 𝑎𝑥

▪ From the fundamental definition of the differentiability of a function, we can find the 

derivative of exponential functions, and find a number e for which (𝑒𝑥)′ = 𝑒𝑥

▪ e is defined as: 𝑒 = lim
𝑛→∞

1 +
1

𝑛

𝑛

▪ We can deduct immediately that, defining the function 𝑥 ∈ ℝ, ln 𝑥 = 𝑒𝑥 −1, (ln 𝑥 )′ =
1

𝑥
. 15
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Common derivatives
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Common derivatives



Common derivatives

▪ Examples: 𝑠𝑖𝑛 𝑥 , 𝑎𝑥 , 𝑙𝑜𝑔𝑎 𝑥 , 𝑐𝑜𝑠ℎ−1 𝑥
 

o
𝑑

𝑑𝑥
sin(𝑥) =cos(x)

o
𝑑

𝑑𝑥
𝑎𝑥 = 𝑎𝑥(ln 𝑎 )

o
𝑑

𝑑𝑥
𝑙𝑜𝑔𝑎 𝑥 = 𝑙𝑜𝑔𝑎 𝑒

1

𝑥

▪ Hyperbolic functions: 

o 𝑐𝑜𝑠ℎ 𝑥 =
𝑒𝑥+𝑒−𝑥

2

o sinh 𝑥 =
𝑒𝑥−𝑒−𝑥

2

o 𝑡𝑎𝑛ℎ 𝑥 =
sinh(x)

cosh(𝑥)

o 𝑐𝑜𝑠ℎ2 𝑥 − 𝑠𝑖𝑛ℎ2 𝑥 = 1

o
𝑑

𝑑𝑥
𝑐𝑜𝑠ℎ−1(𝑥) =

1

𝑥2−1

18



▪ From the fundamental definition, several operations on the differentiation of functions can 

be demonstrated

= 𝑓′(𝑔 𝑥 ) × 𝑔′(𝑥)

O𝑟: 𝑓−1 ′ =
1

𝑓′(𝑓−1 𝑥 )

Differentiability

▪ Example: one solution of the diffusion equation: 
𝜕𝑐(𝑥,𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥,𝑡)

𝜕𝑥2   

x

C

t1

t2
~

Doping Si with P or B to create p-n 

junctions 

𝑐 𝑥, 𝑡 =
𝐴

𝑡
𝑒−

𝑥2

4𝐷𝑡



Maximum, minimum, inflexion

▪ Successive derivatives can help evaluate in a finer way the 

change of functions, and in particular if they have a maximum or 

a minimum locally.  

▪ For a function to have an extremum at a point 𝑥0, it is necessary 

that 𝑓′ 𝑥0 = 0. It is however not sufficient. 

▪ It must also be such that 𝑓′′ 𝑥0 > 0 (convex) or 𝑓′′ 𝑥0 < 0 

(concave).

▪ A point of inflexion is such that 𝑓′′ 𝑥0 = 0, marking where the 

concavity of a function changes. 

     We must also have 𝑓′′′ 𝑥0 ≠ 0 (for example𝑓 𝑥 = (𝑥 − 1)4).

Examples: 
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Lennard-Jones potential: bonds  Electrons Occupancy
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Taylor Series and Taylor expansion

▪ Taylor-Lagrange

     For a function at least n+1 times differentiable (𝑛 ∈ ℕ), defined over an interval 𝑎, 𝑏 ⊂ ℝ, 
(The (n+1)th derivative needs to exist only in 𝑎, 𝑏 ), then ∃𝑐 ∈ 𝑎, 𝑏  such that: 

▪ Hint of demo: consider the function  

We have: and

It is continuous and differentiable. 

From Rolle’s theorem, ∃𝑐 ∈ 𝑎, 𝑏  such that 𝜑′ 𝑐 = 0. Hence the result. 

▪ We saw that the differential is a form of linear approximation of a function (linearization): the 

equality is exact when we take the limit: 

𝑓 𝑥 + ∆𝑥 ≈ 𝑓 𝑥 + 𝑓′(𝑥)∆𝑥 , which we can also write: 

 𝑓 𝑥 + ∆𝑥 = 𝑓 𝑥 + 𝑓′ 𝑥 ∆𝑥 + ∆𝑥ℎ ∆𝑥  with lim
∆𝑥→0

ℎ ∆𝑥 = 0

▪ The error is however quickly large as we move away from 𝑥. A 

better approximation can be obtained with a  higher degree 

polynomial



▪ Let’s consider the domain of definition of f, 𝐼 ⊂ ℝ , that includes 0, and an arbitrary point 𝑥 in 

this interval. We can re-write the Taylor Lagrange polynomial what is called the Maclaurin 

form (with 𝑐 ∈ 0, 𝑥 ): 

∀𝑥 ∈ 𝐼, 𝑓 𝑥 = ෍

𝑘=0

𝑛
𝑥𝑘

𝑘!
𝑓 𝑘 (0) +

𝑥𝑛+1

𝑛 + 1 !
𝑓 𝑛+1 (𝑐)

𝑅𝑛 𝑥 =
𝑥𝑛+1

𝑛+1 !
𝑓 𝑛+1 (𝑐) is called the remainder of the Taylor polynomial σ𝑘=0

𝑛 𝑥𝑘

𝑘!
𝑓 𝑘 (0). 

▪ This remainder is small, and hence the function is well approximated by the Taylor 

polynomial, in two situations: 

Taylor Series and Taylor expansion

Taylor Expansion

𝑥 is close to 0

For all n, the polynomial is a local 

approximation of the function around 0.

The approximation globally improves as the 

degree of the polynomial increases for small x. 

Taylor Series

𝑛 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 (𝑛 → ∞)

For all 𝑥, the polynomial is a global 

approximation of the function over a certain 

domain where the series  σ𝑘=0
∞ 𝑥𝑘

𝑘!
𝑓 𝑘 (0)

Converges. 

22
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▪ Taylor series is a wonderful tool to express all functions as polynomials which are regular 

and easy functions to manipulate. 

▪ For all 𝑥, the polynomial is a global approximation of the function over a certain domain 

where the series  σ𝑘=0
∞ 𝑥𝑘

𝑘!
𝑓 𝑘 (0) converges. 

▪ However, not all functions can be expanded as a Taylor (or Maclaurin) series, and the 

convergence only happens within certain values of x. 

▪ Examples: 

o 𝑒
−

1

𝑥2 has all its nth differential null at 0. 

▪ One intuitive way to evaluate the convergence is to look at the behavior of the remainder.

▪ If : ∃𝑀 ∈ ℝ, ∀𝑛 ∈ ℕ, ∀𝑥 ∈ 𝐼, 𝑓 𝑛+1 (𝑥) ≤ 𝑀, then ∀𝑛 ∈ ℕ, 𝑅𝑛 𝑥 ≤ 𝑀
𝑥𝑛+1

𝑛+1 !
→ 0 as 𝑛 → ∞

With two consequences: 

o 𝑓 𝑥 = σ𝑘=0
𝑛 𝑥𝑘

𝑘!
𝑓 𝑘 (0) + o 𝑥𝑛 for x small, close to 0.

o The series converges towards f(x): 𝑓 𝑥 − σ𝑘=0
𝑛 𝑥𝑘

𝑘!
𝑓 𝑘 (0) ≤ 𝑀

𝑥𝑛+1

𝑛+1 !
→ 0 as 𝑛 → ∞

o Hence functions with points of divergence within a domain will be problematic:

𝑓 𝑥 = (𝑥 − 1)3/2

Taylor Series
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▪ There are different tests that can assess the convergence of a series: 

o Ratio test: one looks at the behaviour of the ratio of two following sequence number 

in the series as n goes to infinity. 

o At a point x for a Taylor series, this gives:

▪ Taking the limit: 

▪ The series is absolutely convergent if |x| < R and divergent if |x| > R. Hence a power 

series is convergent in a definite interval (−R,R) and divergent outside this interval.

Taylor Series - Convergence

The ratio is:

▪ Examples: 𝑒𝑥 ,
1

1−𝑥

▪ Other convergence tests exist like the Cauchy-Hadamar: 
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Taylor series and expansion

Maclaurin series valid over ℝ Taylor expansion around 0 at the order n: 

Euler formula:

▪ These expressions are true also for complex arguments !

▪ Comparing: 𝑒𝑖𝑥, cos 𝑥 , 𝑖𝑠𝑖𝑛(𝑥), one sees quickly that indeed: 𝑒𝑖𝑥 = cos 𝑥 + 𝑖𝑠𝑖𝑛(𝑥) 
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▪ Taylor expansion does not worry about convergence: as long as a function is n-times 

differentiable around an argument, it can be approximated (more or less well) by the Taylor 

expansion. 

▪ Note that it is an approximation ! The differential is an exact value of a slope when, one 

takes the limit.

𝑓 𝑥 + ∆𝑥 ≈ 𝑓 𝑥 + 𝑓′(𝑥)∆𝑥 , which we can also write: 

 𝑓 𝑥 + ∆𝑥 = 𝑓 𝑥 + 𝑓′ 𝑥 ∆𝑥 + ∆𝑥ℎ ∆𝑥  with lim
∆𝑥→0

ℎ ∆𝑥 = 0

Taylor Expansion

𝑑𝑦 ≠ ∆𝑦

▪ From the Taylor series, one can extract the expansion to a first few orders:

Example for the second order: 𝑓 𝑥 + ℎ = 𝑓 𝑥 + ℎ𝑓′ 𝑥 +
ℎ2

2
𝑓′′ 𝑥 + 𝑜(ℎ2)

▪ The approximation improves usually at higher order: 

▪ Zero-th order: the function is constant, locally approximated to its value at 0 (or other) 

▪ First order: linear approximation that is very often used in engineering;

▪ Second order: quadratic approximation also widely used, often when f’(0) = 0.



Physical representation of chemical bonds

A simple model to physically apprehend the bond between atoms: the Lennard-

Jones potential. 

A Conservative force (the work done on an object does not depend on the object’s 

path) can be derived from this potential:  

r

V = 0 


















r0

r

12

 - 2






r0

r

6

 

F = -k (r-r0) 

F F 

r0 

r 

V = k/2 (r-r0)
2 

V 

r0 

Potential of 

Lennard-Jones:

répulsion r < r0 
V 

r r0 

attraction r > r0 
 

équilibre r = r0 
 

-e0 
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ε

Physical representation of chemical bonds

▪ A gradient is a vector that looks into the change of a quantity over the different 

directions: 

Ԧ𝐹 = −𝑔𝑟𝑎𝑑𝑉 = −
𝜕𝑉

𝜕𝑥
Ԧ𝑥 −

𝜕𝑉

𝜕𝑦
Ԧ𝑦 −

𝜕𝑉

𝜕𝑧
Ԧ𝑧

▪ Along a vector 𝑒𝑟 and a distance called r, we have: 

Ԧ𝐹 = −
𝜕𝑉

𝜕𝑟
𝑒𝑟

▪ The derivative has hence a lot of physical meaning: for 

small r, when atoms get close to each other, the 

potential increases significantly, from which derives a 

force that is repulsive, away from the increase of the 

energy, hence the minus sign in front of the gradient. 

▪ As atoms are pulled apart, an attractive force brings the 

atoms back together into a more stable, low energy 

state. 

▪ At the equilibrium condition, the forces equalize and the 

change of potential is zero. 



Tangents in Materials Science: Binary Systems

▪ For a unitary system, the molar free enthalpy as a 

function of temperature looks like this:   

GL 

GS 

G 

T Tf 

▪ For a binary system of species A and B (Cu 

and Ni for example) with 

▪ the system can separate into two different 

phases of different composition to minimise the 

free enthalpy. 

▪ The equilibrium of a thermodynamic system is driven by the minimization of the 

Gibbs free energy (at T and P constant). 

Gm
S

Gm
L

XB 0 1XB0

 
X
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XB0

L

Binary Systems with full Solubility

▪ At T = T0, the Gibbs free energy of the liquid solution at 

XB0 is higher than the one for the solid phase. We can 

then expect the system to be in the solid state. 

▪ The system has however an alternative possibility to 

further reduce its free energy: put a fraction 𝜒𝑆 in the 

solid phase, and a fraction 𝜒𝐿 in the liquid phase (with 

𝜒𝑆 + 𝜒𝐿 = 1).

▪ By taking the common tangent of the molar Gibbs 

energy for the solid (𝐺𝑆
𝑚) and the liquid (𝐺𝐿

𝑚), we can 

find the proportion of B in the liquid (𝑋𝐵
𝐿(𝑇0)) and the 

solid (𝑋𝐵
𝑆(𝑇0)) phases. 

▪ The molar Gibbs free energy is then given by: 

▪ By computing the slope of the tangent, we have: 

▪ Which enables to recover the lever rule.  



▪ From the Gibbs free energy curves as a function of XB at different temperatures, we can 

then reconstruct the phase diagram for all temperatures. 

https://www.doitpoms.ac.uk/tlplib/phase-diagrams/printall.php

Binary Systems with full Solubility
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Binary Systems with full Solubility



Example: solidification curves for the diagram Cu-Ni that enables to create the phase 

diagram. 

Note that contrary to unitary systems, the phase change do not occur at a single T. 

Binary Systems with full Solubility
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SUMMARY

▪ We presented the concept of functions and defined limits, continuity and derivability. 

▪ We focused on differentiability and in particular the tangent of a function. 

▪ We showed how the fundamental definition of the differentiability of a function can 
be used to find the derivative of some common functions. 

▪ We reminded the L’Hôpital rule. 

▪ We introduced Taylor expansion and Taylor series. 

▪ We introduced the need for the common tangent construction in phase diagrams, 

and gave an example of an exponential function in the Lennard-Jones potential. 

▪ Next week 

▪ We will discuss parametric functions and integration. 

▪ We will also discuss multi-variable functions 

▪ We will derive the diffusion equation
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