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The concept of functions

= The concept of Functions has been developed slowly over centuries of discoveries, and it is
hard to bring forward one particular mathematician associated with it.

= In 1755, in his Institutiones calculi differentialis, Swiss mathematician Leonhard Euler gave
a more general concept of a function that is very close to our modern understanding:

“When certain quantities depend on others in such a way that they undergo a change when the latter
change, then the first are called functions of the second. This name has an extremely broad character; it

encompasses all the ways in which one quantity can be determined in terms of others.’

Do you believe in God?

Well, | do believe in higher
powers . . .

Leonhard Euler (1707-1783)

» Euler popularized the Greek letter 1r to denote the ratio of a circle's circumference to its diameter, was the
first using the notation f(x) for the value of a function, the letter i to express the imaginary unit, the Greek
letter Z to express summations, the Greek letter A for finite differences. He gave the current definition of the

constant e, the base of the natural logarithm, now known as Euler's number.
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https://en.wikipedia.org/wiki/Institutiones_calculi_differentialis

The concept of functions

Given two sets of real numbers, a domain (often referred to as the x-values, and interval 1)
and a co-domain (often referred to as the y-values), a real function assigns to each x-value
a unigue y-value.

F F
Injective function (or injection): function f that maps distinct ‘_/\/\’/\NM
elements of its domain to distinct elements; that is, f(x;) = f(x,) =, r O
implies X; = X,. L ro -
Surjective functions (or surjection): a function f such that every vy F=-k(rr)
element y can be mapped from element x so that f(x) = . V = Kk/2 (r-rp)?

Example: the function f(x) = x? is injective and surjective (ie 5

bijective) from I = R, to R,. It is not injective from [ = Rto R,, |

and not surjective I = Rto R_. ’ >
o

= f(x) =In(x — 1) is not defined for x < 1. Itis injective
and surjective from I = |1, +oo[ to R.

f(x) =In(x — 1) » The domains of definition are hence very important
when defining the properties of functions : physically
but also mathematically !



The concept of functions

Functions defined on a domain, often a part I ¢ R, form an associative and commutative
R-algebra (often denoted K! ) with the common addition, multiplication, and the product of a
function with a scalar

VfgeKX vxeX, (f + g)(x) = fix)+ g(x)
Vg e KX Vx e X, (fe)x) = flx)g(x)
VieK, Vfe KX, Vxe X, (Af)x)=Arf(x)

Other definitions:
o Composition: if a function f is defined from | to X, and g is defined over X, then one can
define the function Vx € I, h(x) = gof(x).
o f~listhe inverse of f and is defined such that f~'of = fof~! = I, (the identity function).
A function is even (odd) ifvx € I,f(x) = f(—x) (f(x) = —f(—x))
o Periodicity: f is periodic of period Tifvx € I, f(x + T) = f(x).

O

Limits of real functions:

=  Afunction f:I - R with | including +oco, admits [ for limit when x goes to infinity if and
only if
Ve>0,3A>0,vxel,(x = A= |f(x) =] <¢)

= Afunction f:1 - R with | including +oco , admits +oo for limit when x goes to infinity if
and only if
VA>0,3A'>0,Vxel,(x=2A"= f(x) = A)



The important notion of limits

= Limits of functions at finite values are very important and can be defined by looking at the
limit of sequences:

= Afunction f:I - R (or other domain) admits [ for limit in a point a € I if and only if
For all sequence (u,,),ey Such that lim u,, = a, lim f(u,) = L.
n—oo n—oo

= One can express this without sequences:

Ve>0,3a>0,Vxel|lx—a|l<a=|f(x) -1l <¢

» Functions can diverge to +oo at finite values of the argument:

Divergence to +o: VA >0,3a>0,Vxe€l,|lx—al<a= f(x) = A
Divergence to —»: VB <0,3a >0,Vx€l,|x —al<a= f(x) <B

= Like for Sequences:
o Iffisincreasing (decreasing) and has an upper bound (lower bound), then it

converges.

o Iffisincreasing (decreasing) and has no upper bound (lower bound), then it tends to
+ o0 (—o0).



Right and Left limits

= The concepts of limits and continuity of functions are essential in Materials Science.
= To apprehend it, it is essential to distinguish the limit when we approach a real number | from
a sequence greater or smaller than I.

Lennard-Jones potential: bonds Electrons Occupancy First order phase transition
V4 S A
T(’_',_
! Iﬂs
i ——
-8, To T

= f:] = R (or other domain) admits a right limit [ at a point a € I if and only if
For all sequence (u,),ey Such that lim u,, = a and vn € Nu,, > a, lim f(u,) = L.
n—oo

n—oo

One can express this without sequences:
f:I - Rhasaright limitl ata €I if:
Ve>0,3a>0,Vxel,0<x—a<a=]|f(x) -l <c¢ Notation: lim+f(x) = |

xX—a
f:1 - Rhasaleftlimitl ata € I if:
Ve>0,3a>0,Vxel,0<a—-x<a=|f(x) =1l <e Notation: lim f(x) =1

xX—a 7



Results of limits

For (A, L,I") e C3,f,g:1 > Rfgadmitland! as limit at a point a € I respectively:

Jx) — = |f(x)| —> |l|

X=*{ X—rql

fx) r 0= |f(x)]— 0

X = X =+l

= f(x)+gx) —> 1 +/

g(x) — | x—a

X =+l X ==l

If f is complex, then:

{f(ﬂ—*ﬂ

Ara == f(x)g(x) — 0
£ is bounded around a x—a

f(x) ? []
Y = fglx) — I
g(x) P I J(x)e(x) x—a

g(x) — I' 1 ,

r#£0 |
fx) —>1

X—rd

— g(x) x—m} I

f(x) !
! " e —
&(x) x—+a : 7 g(x) x—a I

I"#0

f:1— C, (a,8) €R?

f(x) — a+if —

xX—d

(Ré f)(x) —> «

(Im f)(x) — B.



Continuous functions

= Afunction is continuous if arbitrarily small changes in its value can be assured by restricting
to sufficiently small changes of its argument.

= Afunction f:1 - Rwith I c R, fis continuous at the point x, € I if:
Ve>0,3a>0,Vx el |x—xyl <a=|f(x) — f(xy)] < e

It is equivalent to say that f is continuous at point x, € I if and only if f has a right and left limit
at xo and the limits are equal. (i.e. f must have f(x,) as a limit at x,).

1/x




Continuous functions

= Definition with sequences:
A function f: I = R (or other domain) admits [ for limit in a point a € I if and only if :

For all sequence (u,,),ey SuUch that lim u,, = a, lim f(u,) = f(a)
n—0o n—-0o

= |Important results
= |f fand g are two continuous functions over an interval I:

= |f] is continuous
= f 4+ gisalso continuous over |,
= Af,A1 € Ror C, is continuous;
= f X g iscontinuous;
= |f g #0overl, f/g is continuous;
= |f g is continuous over f(I), h(x) = gof(x) is continuous.
= f~1 if defined, is continuous over f(I).
= |ffis complex,itis continuous if and only if its real and imaginary parts are.

= Extreme value theorem:

If f:R - R is continuous over a segment [a, b] < R, then there exist two real numbers ¢ and
d in [a, b] such that f(c) is the minimum and f(d) is the maximum value of f(x).
Or

3c,d € [a, b, such that f(c) = infiap1f (%), and f(d) = suppqp f(x) 10



Differentiability

What matters the most in the study of a function representing a physical model is its values
at certain important input, but also how it varies as the input argument is changed.

YA
The variation of a curve can be locally
approximated by the slope joining two points of
the curve near-by. \
As the distance Ax — 0, we approach the tangent
of the function:

A Ax) —
tana = lim tane’ = lim —> = lim Sx+Ax) — fx)
o o Ax—0 AX  Ax—0 Ax 0

If the difference quotient Ay/Ax has a limit as Ax — 0, this limit is called the derivative or
differential coefficient of the function y = f (x) with respect to x and we write:

dy d . Ay . fx+Ax)— f(x)
'— flx)= = = — — lim — = 1

v =/ dx dx S (x) A;E}O Ax A;IEO Ax
More rigorously, a function f: I - R with I c R, is differentiable at x € I if:

fle+h) —f(x)
h

NI CE DRy {5 B 1

h—-0 h

Ve>0,3a >0,Vhel|hl <a= I| <e¢




Differentiability

A function f as defined earlier can be right and / or left differentiable if f(xmf)l_f(x) admits a right
and left limit respectively.

Corollary: f is differentiable at a € I if it is right and left differentiable, and the values are equal.

If a function is differentiable at point a, it is continuous at a.

) v = |x|
The reverse is not true !

Important immediate results:
» fisincreasing (decreasing) over a domain | if and 1
onlyifvx € I,f'(x) > 0(f'(x) <0).

If f:R - R is continuous and monotonic over a segment [a,b] c R, it then takes all
the values within [inf(f(a), f (b)), sup(f(a), f(b)].

The Rolle theorem: if f is a function defined over [a, b] c R, continuous and differentiable,
and if f(a) = f(b), then 3c € |a, b[, f'(c) = 0.

Cauchy’s mean value theorem: If f, g are two functions defined over [a, b] c R,
continuous over [a, b] and differentiable over ]a, b[, then 3c € ]a, b, such that:

(f®) - f(@)g'(@) = (g(b) — g(@)f'(e) 12



L'Hopital rule

= The Hopital rule: It states that the limit, when we divide one function by
another is the same after we take the derivative of each function (under
certain conditions..).

= If:
o fand g are two functions, differentiable over an interval I, not :
necessarily at c; G. de L'Hopital
o g’ is not zero around c (for all x # ¢) (1661-1704)
o We have : lim f(x) = limg(x) =0o0or + o
X—C X—C
@ lim% exists:
x—c g’
. e [
lim —— = lim
r—c g(x) T—C g’(g;)
» The rule also applies for x - o dij e

= Examples:
o lim32®) p
x->0 X B

o (sin(x))’ from the definition of the differential

NG



Differentiability

= We saw that the differential is a form of linear approximation of a function (linearization): the
equality is exact when we take the limit:

flx+h) = f(x)+ hf'(x), whichwe can also write: f(x + h) = f(x) + hf'(x) + o(h)
with lim 2 = ¢
h-0 h
= From the fundamental definition, several operations on the differentiation of functions can
be demonstrated:

General rules Function Derivative
y=f(x) y'=r(x)
1. Constant factor y=cf(x) vy =cf'(x)
2. Sum (algebraic) rule y=u(x)+uv(x) y =u'(x)+v(x)
3. Product rule y=u(x)v(x) Yy =u'(x)v(x)+u(x)v'(x)
. u(x) ' (x)v(x) —u(x)v'(x)
4. Quotient rule y=- ) y/ 2 (x)2
. d
5. Chain rule y=flgx)] y = %g’(x): f'(g(x)) X g'(x)
1
6I f t — —1 ! — — ,rl
nverse functions y=f""x) y xdy ~ 70
ie.x=f(y) 1
Or: (f—l)l —

() 14



Common functions

A power function is a function that can be represented in the form f(x) = kx%, where £ and

a are real numbers, and £is known as the coefficient.

They are continuous functions and can be differentiated until the derivative is null.

Va € R, f'(x) = akx®1 \j

These functions are the basis of polynomials.

One can show that from the definition of the Even power

Odd power

differentiability of a function that: y

Exponential functions:
Function of the form f: R (or €) - R (or C) Robaiiicis: Figl
f(x) = a*

y

N

1

[

X = —x, f(x) - —
and x — =, f(x) » =

From the fundamental definition of the differentiability of a function, we can find the

derivative of exponential functions, and find a number e for which (e*)' = e*

. . 1 n
e is defined as: e = lim (1 + Z)

n—-oo

We can deduct immediately that, defining the function x € R,In(x) = (e*)™1, (In(x))’ =

R R




Common derivatives

Derivatives Function Derivative
of fundamenthl functions y=f(x) y' = f(x)
1. Constant factor y = constant y'=0
2. Power function y=x" y' =nx""1
3. Trigonometric functions y =sinx y' =cosx
Y = COSX y' = —sinx
! 1 2
y =tanx y = 5 =1+tan~x
CcoS= X
/ —1 2
y =cotx y=— =—1—cotcx
sin“ x
. . . . 1 p 1
4. Inverse trigonometric functions y=sin" X

y=cos 'X
y =tan~

X

y=cot lx

r_ 1
- V1—x2
, 1

Y= 1+ x2
;L 1

Y C14+x2

16



Common derivatives

Derivatives Function Derivative
of fundamental functions = F(%) ¥= (%]
5. Exponential function y=¢* y'=e*
- : g 1
Logarithmic function ¥y =Inx Y = =
6. Hyperbolic trigonometric functions y = sinhx y' = coshx
y = coshx ' =sinhx
/ 1 2
y = tanh x V= 5 =1—tanh“ x
cosh” x
/ 1 2
y = cothx y=—s7 =1—coth“x
sinh” x
7. Inverse hyperbolic y =sinh~l x g = L
trigonometric functions V1+x2
1
y=cosh lx = (% >1)
x2-1
y =tanh~ 1 x = ! (x| < 1)
1—x2
—coth ™! x P ¥ =1
y y=-—— (xI>1)

17



Common derivatives

Examples: sin(x), a*,log,(x),cosh™(x)

o :—x (sin(x)) =cos(x)
o dd—x(ax) = a*(In(a))

o +-(loga(x)) = loga(e) -

Hyperbolic functions:

X —-X

o cosh(x) =¢ +2e
X_,—X

o sinh(x) =2 Ze
__ sinh(x)
o tanh(x) = cosho

o cosh?(x) —sinh?*(x) =1

1

Vx2-1

o ;—x(cosh‘l(x)) =

1+

o O

: | — y = sinh(x)

-y = cosh(x)
+y = tanh(x)

Y |,

E

X1 /
|I|§
B TN \E
(-1, 0) y Il\ _F‘:;} (1,0)

» A O

(0, -1)

18



Differentiability

= From the fundamental definition, several operations on the differentiation of functions can
be demonstrated

General rules Function Derivative
y=r(x) yi=7"(x)
1. Constant factor y=cf(x) Y =cf'(x)
2. Sum (algebraic) rule y=u(x)+v(x) Yy =u'(x)+v'(x)
3. Product rule y=u(x)v(x) y =u'(x)v(x)+u(x)v'(x)
| u(x) ;v (x) —u(x)v'(x)
4. Quotient rule y = (%) Yy = v(x)2
d
5. Chain rule y = flgx)] y=Low =) x g
1
6. Inverse functions y=f"1x) y = = . -1\ _
dx/dy Jy) OT (f ) — / _
ie.x=f(y) (1)
2
= Example: one solution of the diffusion equation: % = %

Doping Si with P or B to create p-n

junctions
x2
c(x,t) = —e 4Dt
Vit




Maximum, minimum, inflexion

. . . . . A
= Successive derivatives can help evaluate in a finer way the

| f(x)
change of functions, and in particular if they have a maximum or l
a minimum locally. :

~Y

|
= For a function to have an extremum at a point x,, it is necessary " :
that f'(x,) = 0. It is however not sufficient. e
= |t must also be such that f"'(x,) > 0 (convex) or f""(x,) <0 ;/
(concave). i /: N
= A point of inflexion is such that f''(x,) = 0, marking where the ”
concavity of a function changes. @
We must also have f'"(x,) # 0 (for examplef(x) = (x — 1)*). /

Examples:

Lennard-Jones potential: bonds Electrons Occupancy

q) e

=Y



Taylor Series and Taylor expansion

equality is exact when we take the limit:

f(x + Ax) = f(x) + f'(x)Ax , which we can also write: )
fx +Ax) = f(x) + f'(x)Ax + Axh(Ax) with lim h(Ax) = 0 y+ay

The error is however quickly large as we move away from x. A
better approximation can be obtained with a higher degree

We saw that the differential is a form of linear approximation of a function (linearization): the

ol \ |«

polynomial

= Taylor-Lagrange

For a function at least n+1 times differentiable (n € N), defined over an interval [a, b] c R,
(The (n+1)th derivative needs to exist only in ]a, b[), then 3c € ]a, b[ such that:

10 = f@) + b -a)f @) + P (@) 4+ B ) (( )) £ (o)

= Hint of demo: consider the function

, , N (b—a)" oy, (h—z)"t?
p: [0, )] =Rz f(b) = fla) = (b—a)f (x) - ) = A
It is continuous and differentiable.

h—a) (b—a)"
We have: p(¢) = p(b) = 0. and Vr € Ja,b],  ¢'(z) = Gkl FOD ey + A

n! !
From Rolle’s theorem, 3¢ € ]a, b[ such that ¢'(c) = 0. Hence the resullt. 21




Taylor Series and Taylor expansion

= Let’s consider the domain of definition of f, I € R, that includes 0, and an arbitrary point x in
this interval. We can re-write the Taylor Lagrange polynomial what is called the Maclaurin

form (with ¢ € 0, x[):

Tl+

vx € 1, f(x) = z - " 090y e A

Rn(x) = ( +1)!

f("“)(c) is called the remainder of the Taylor polynomial ¥7_, —f(") (0).

» This remainder is small, and hence the function is well approximated by the Taylor

polynomial, in two situations:

Taylor Expansion
xiscloseto 0

For all n, the polynomial is a local
approximation of the function around O.

The approximation globally improves as the

degree of the polynomial increases for small x.

Taylor Series
nis large (n — o)

For all x, the polynomial is a global
approximation of the function over a certain

k
domain where the series X7, f* (0)

Converges.

22



Taylor Series

» Taylor series is a wonderful tool to express all functions as polynomials which are regular
and easy functions to manipulate.
= For all x, the polynomial is a global approximation of the function over a certain domain

k
where the series Z,‘j’zo%f“‘)(O) converges.

= However, not all functions can be expanded as a Taylor (or Maclaurin) series, and the
convergence only happens within certain values of x.

= Examples:

1
o e «2 has all its nth differential null at 0. !

= One intuitive way to evaluate the convergence is to look at the behavior of the remainder.

n+1

If:aM e R,yn € N,vx € I,| f"*V(x)| < M, thenvn €N, |R,(x)| < M =

Y —->0asn —» o

With two consequences:

k
o flx)= Z’,@zo’;—'f(") (0) + o(x™) for x small, close to 0.

xn+1

(n+1)!
o Hence functions with points of divergence within a domain will be problematic:

fl) = (x = 1)%2

k
o The series converges towards f(x): ‘f(x) — }(‘=0%f”‘) 0)| <M —>0asn - o

23



Taylor Series - Convergence

» There are different tests that can assess the convergence of a series:
o Ratio test: one looks at the behaviour of the ratio of two following sequence number
in the series as n goes to infinity.
o At a point x for a Taylor series, this gives:

41
.. an+1xn
ao+aix +asx*>+asx>+ -+ anx"+an1x"t+--- The ratio is: 5 e
n
. An+1 ’x’ ] dn
- N lim X| = — where R = lim
= Taking the limit: noe| a, R ey

» The series is absolutely convergent if |X| < R and divergent if |[x| > R. Hence a power
series is convergent in a definite interval (-R,R) and divergent outside this interval.

«Dlvergent + Convergent | Divergent -

"
AR

—R 0 4R

1
= Examples: e¥,—
1—x

1 .
= Other convergence tests exist like the Cauchy-Hadamar: & = ,}lﬂo v |an| o4



Taylor series and expansion

Maclaurin series valid over R Taylor expansion around O at the order n:
IL'2 .'L‘4 N x2n
cos(z) =1— o + T +...+(-1) —(2n)! + ... 2 o )
_ w8 8 g2+l e’ = 1+3‘+72—|+"'+E+(1(:F)
Sln(x) = — y + a - (_ ) (2 + 1)| ' .T3 375 . J.'lp-}-l ap 42
sine = r——+—+-+ (-1 ——= + o(a"7)
arctan(x) —r— .’L'_3 e 1‘_5 _ + (_l)n x2n+1 + -3' 5' (2]) + l)'
N 3 5 2n+1 7 2 gl 2 -
— 2p
@) — oy L2 1320 132t cosr = 1_2_!+E+'“+(_])p(2p)!J”"(J )
aresin() =+ o3 545 Tt o4 2n) mt1 5 vt
a " sinha = o4+ =+ =+ -+ ———+o(a"*
exp(w)=1+%+%+...—+—i—'+... 315! (2p+ 1)! ( )
: ’ ’ 2 i 2p
B x2 2" coshx = l+£—+$——!—---+ il +n(r”+l)
cosh(x)—1+§+z+...+(2—n)!+... 2! 4!1 (2p)! /
. .’L’3 x5 :L.2n+1
smh( )—x+§+ 5l +...+m+...
1+2)*=1+ Fa: + a(az_ DI B P 1)"'(? bl PP Frrne
Y n.
ml+e)=z— 2t % (et
= 5t 5~ — + ..

Euler formula:
» These expressions are true also for complex arguments !

Comparing: e, cos(x) , isin(x), one sees quickly that indeed: e* = cos(x) + isin(x)
25



Taylor Expansion

= Taylor expansion does not worry about convergence: as long as a function is n-times
differentiable around an argument, it can be approximated (more or less well) by the Taylor
expansion.

= Note that it is an approximation ! The differential is an exact value of a slope when, one
takes the limit.

flx+ Ax) = f(x) + f'(x)Ax , which we can also write:
flx+ Ax) = f(x) + f'(x)Ax + Axh(Ax) with Al}icr_r)lo h(Ax) =0

dy_l_ Ay
x  aroAx  Ay=fx+Ax)— f(x)

= From the Taylor series, one can extract the expansion to a first few orders:
2
Example for the second order: f(x + h) = f(x) + hf'(x) + h?f”(x) + o(h?)

= The approximation improves usually at higher order:

= Zero-th order: the function is constant, locally approximated to its value at O (or other)
= First order: linear approximation that is very often used in engineering;

» Second order: quadratic approximation also widely used, often when f(0) = 0. 26



Physical representation of chemical bonds

A simple model to physically apprehend the bond between atoms: the Lennard-
Jones potential.

A Conservative force (the work done on an object does not depend on the object’s

path) can be derived from this potential:

F=—-gradV

F F
_— -— Potential of V = o e 2 o °
‘T/\/\/\/\/\/\f‘ Lennard-Jones: —%ollr) "4y
e
r V1| répulsionr<r,
vt F=-k(rry) l r

V =k/2 (r-rp)?

attractionr >r,

_eo ___________
equilibre r =r,

» T



Physical representation of chemical bonds

A gradient is a vector that looks into the change of a quantity over the different
directions:

G OV V. oV
A PR e P

Along a vector e, and a distance called r, we have:

The derivative has hence a lot of physical meaning: for
small r, when atoms get close to each other, the
potential increases significantly, from which derives a o

force that is repulsive, away from the increase of the :
energy, hence the minus sign in front of the gradient. |
I
I
|

As atoms are pulled apart, an attractive force brings the

atoms back together into a more stable, low energy for——-—
state.
At the equilibrium condition, the forces equalize and the 28

change of potential is zero.



Tangents in Materials Science: Binary Systems

The equilibrium of a thermodynamic system is driven by the minimization of the

Gibbs free energy (at T and P constant). G

For a unitary system, the molar free enthalpy as a
function of temperature looks like this:

= For a binary system of species Aand B (Cu
and Ni for example) with n;,; = ny + ng

» the system can separate into two different
phases of different composition to minimise the
free enthalpy.




Binary Systems with full Solubility

Solution solide

Liquide

Liquidus

R

Solidus
i

Solide |
|

0 X3(To) XgoXe(To) 1 Xg

At T =T,, the Gibbs free energy of the liquid solution at
Xgo IS higher than the one for the solid phase. We can
then expect the system to be in the solid state.

The system has however an alternative possibility to
further reduce its free energy: put a fraction ys in the
solid phase, and a fraction y; in the liquid phase (with

Xs+x.=1).

By taking the common tangent of the molar Gibbs
energy for the solid (G¢*) and the liquid (G™), we can
find the proportion of B in the liquid (X5 (T,)) and the
solid (X5 (T,)) phases.

The molar Gibbs free energy is then given by:
Go' = xsGo + x1.Gs < G&*(Xpo)
By computing the slope of the tangent, we have:

S
m_XBL_XBo s , XBo — X3

S — =
DOXe—X3 0 Xi—Xi

Which enables to recover the lever rule.
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From the Gibbs free energy curves as a function of Xy at different temperatures, we can
then reconstruct the phase diagram for all temperatures.

T
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G
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T3 T4 TS
5 S [ o’
L <
e e 3
Wit%h B ————» Wit% B ——————» Wit% B ——————p

https:/Mmww.doitpoms.ac.uk/tiplib/phase-diagrams/printall.php
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Example: solidification curves for the diagram Cu-Ni that enables to create the phase
diagram.

Note that contrary to unitary systems, the phase change do not occur at a single T.

16004 1600
OC oc

1500 \ 1500

e . 1

Liquid

/
1400 1400 —
1300 1300} | \s\O‘Gk S
O
/{'y
1200 1200 /
Solide o

1100 1100#

1000 \ \ \ \ Lemps, 000

0% Ni_ 20% Ni 60% Ni_80% Ni 100% Ni_ 10 20 30 40 50 60 70 80 90 100
100% Cu 80% Cu 40% Cu 20% Cu 0%Cu  Cu Ni

A\
|

AN




SUMMARY

We presented the concept of functions and defined limits, continuity and derivability.
We focused on differentiability and in particular the tangent of a function.

We showed how the fundamental definition of the differentiability of a function can
be used to find the derivative of some common functions.

We reminded the L'Hopital rule.
We introduced Taylor expansion and Taylor series.

We introduced the need for the common tangent construction in phase diagrams,
and gave an example of an exponential function in the Lennard-Jones potential.

Next week

= We will discuss parametric functions and integration.
= \We will also discuss multi-variable functions

= We will derive the diffusion equation 34
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